Chin. Phys. Lett.  2023, Vol. 40 Issue (10): 107201    DOI: 10.1088/0256-307X/40/10/107201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Contrasting Transport Performance of Electron- and Hole-Doped Epitaxial Graphene for Quantum Resistance Metrology
Xinyi Wan1,2,3, Xiaodong Fan1,2,3*, Changwei Zhai4,5, Zhenyu Yang4,5, Lilong Hao1,2,3, Lin Li1,2,3*, Yunfeng Lu4,5, and Changgan Zeng1,2,3*
1CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei 230026, China
2International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
3Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
4National Institute of Metrology, Beijing 100029, China
5Key Laboratory of Electrical Quantum Standards for State Market Regulation, Beijing 100029, China
Cite this article:   
Xinyi Wan, Xiaodong Fan, Changwei Zhai et al  2023 Chin. Phys. Lett. 40 107201
Download: PDF(4516KB)   PDF(mobile)(5043KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Epitaxial graphene grown on silicon carbide (SiC/graphene) is a promising solution for achieving a high-precision quantum Hall resistance standard. Previous research mainly focused on the quantum resistance metrology of n-type SiC/graphene, while a comprehensive understanding of the quantum resistance metrology behavior of graphene with different doping types is lacking. Here, we fabricated both n- and p-type SiC/graphene devices via polymer-assisted molecular adsorption and conducted systematic magneto-transport measurements in a wide parameter space of carrier density and temperature. It is demonstrated that n-type devices show greater potential for development of quantum resistance metrology compared with p-type devices, as evidenced by their higher carrier mobility, lower critical magnetic field for entering quantized Hall plateaus, and higher robustness of the quantum Hall effect against thermal degeneration. These discrepancies can be reasonably attributed to the weaker scattering from molecular dopants for n-type devices, which is further supported by the analyses on the quantum interference effect in multiple devices. These results enrich our understanding of the charged impurity on electronic transport performance of graphene and, more importantly, provide a useful reference for future development of graphene-based quantum resistance metrology.
Received: 01 August 2023      Published: 13 October 2023
PACS:  06.20.-f (Metrology)  
  73.43.-f (Quantum Hall effects)  
  72.80.Vp (Electronic transport in graphene)  
  72.10.Fk (Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/10/107201       OR      https://cpl.iphy.ac.cn/Y2023/V40/I10/107201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xinyi Wan
Xiaodong Fan
Changwei Zhai
Zhenyu Yang
Lilong Hao
Lin Li
Yunfeng Lu
and Changgan Zeng
[1] von Klitzing K and Ebert G 1985 Metrologia 21 11
[2] Jeckelmann B, Jeanneret B, and Inglis D 1997 Phys. Rev. B 55 13124
[3] Poirier W and Schopfer F 2009 Eur. Phys. J. Spec. Top. 172 207
[4] Schopfer F and Poirier W 2012 MRS Bull. 37 1255
[5] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, and Firsov A A 2005 Nature 438 197
[6] Zhang Y B, Tan Y W, Stormer H L, and Kim P 2005 Nature 438 201
[7] Sharapov S G, Gusynin V P, and Beck H 2004 Phys. Rev. B 69 075104
[8] Tzalenchuk A, Lara-Avila S, Kalaboukhov A, Paolillo S, Syvajarvi M, Yakimova R, Kazakova O, Janssen T J, Fal'ko V, and Kubatkin S 2010 Nat. Nanotechnol. 5 186
[9] Ribeiro-Palau R, Lafont F, Brun-Picard J, Kazazis D, Michon A, Cheynis F, Couturaud O, Consejo C, Jouault B, Poirier W, and Schopfer F 2015 Nat. Nanotechnol. 10 965
[10] Lafont F, Ribeiro-Palau R, Kazazis D, Michon A, Couturaud O, Consejo C, Chassagne T, Zielinski M, Portail M, Jouault B, Schopfer F, and Poirier W 2015 Nat. Commun. 6 6806
[11] Janssen T J B M, Tzalenchuk A, Yakimova R, Kubatkin S, Lara-Avila S, Kopylov S, and Fal'ko V I 2011 Phys. Rev. B 83 233402
[12] Kopylov S, Tzalenchuk A, Kubatkin S, and Fal'ko V I 2010 Appl. Phys. Lett. 97 112109
[13] Lara-Avila S, Moth-Poulsen K, Yakimova R, Bjornholm T, Fal'ko V, Tzalenchuk A, and Kubatkin S 2011 Adv. Mater. 23 878
[14] Lartsev A, Yager T, Bergsten T, Tzalenchuk A, Janssen T J B M, Yakimova R, Lara-Avila S, and Kubatkin S 2014 Appl. Phys. Lett. 105 063106
[15] Rigosi A F, Kruskopf M, Hill H M, Jin H, Wu B Y, Johnson P E, Zhang S, Berilla M, Hight W A R, Hacker C A, Newell D B, and Elmquist R E 2019 Carbon 142 468
[16] He H, Kim K H, Danilov A, Montemurro D, Yu L, Park Y W, Lombardi F, Bauch T, Moth-Poulsen K, Iakimov T, Yakimova R, Malmberg P, Muller C, Kubatkin S, and Lara-Avila S 2018 Nat. Commun. 9 3956
[17] He H, Lara-Avila S, Kim K H, Fletcher N, Rozhko S, Bergsten T, Eklund G, Cedergren K, Yakimova R, Park Y W, Tzalenchuk A, and Kubatkin S 2019 Metrologia 56 045004
[18] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, and Firsov A A 2004 Science 306 666
[19] Satrapinski A, Novikov S, and Lebedeva N 2013 Appl. Phys. Lett. 103 173509
[20] Yang Y F, Cheng G J, Mende P, Calizo I G, Feenstra R M, Chuang C, Liu C W, Liu C I, Jones G R, Hight W A R, and Elmquist R E 2017 Carbon 115 229
[21] Chen J H, Jang C, Adam S, Fuhrer M S, Williams E D, and Ishigami M 2008 Nat. Phys. 4 377
[22] Du X, Skachko I, Barker A, and Andrei E Y 2008 Nat. Nanotechnol. 3 491
[23] Tahara K, Iwasaki T, Furuyama S, Matsutani A, and Hatano M 2013 Appl. Phys. Lett. 103 143106
[24] Yan B M, Han Q, Jia Z Z, Niu J J, Cai T C, Yu D P, and Wu X S 2016 Phys. Rev. B 93 041407(R)
[25] Li J Y, Lin L, Rui D R, Li Q C, Zhang J C, Kang N, Zhang Y F, Peng H L, Liu Z F, and Xu H Q 2017 ACS Nano 11 4641
[26] Moreau N, Brun B, Somanchi S, Watanabe K, Taniguchi T, Stampfer C, and Hackens B 2021 Phys. Rev. B 104 L201406
[27] Woszczyna M, Friedemann M, Pierz K, Weimann T, and Ahlers F J 2011 J. Appl. Phys. 110 043712
[28] Zhu W J, Perebeinos V, Freitag M, and Avouris P 2009 Phys. Rev. B 80 235402
[29] Wang L M I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T W K, Campos L M, Muller D A, Guo J K P, Hone J, Shepard K L, and Dean C R 2013 Science 342 614
[30] Jia Z Z, Yan B M, Niu J J, Han Q, Zhu R, Yu D P, and Wu X S 2015 Phys. Rev. B 91 085411
[31] Srivastava P K, Arya S, Kumar S, and Ghosh S 2017 Phys. Rev. B 96 241407
[32] Zion E, Butenko A, Sharoni A, Kaveh M, and Shlimak I 2017 Phys. Rev. B 96 245143
[33] Novikov D S 2007 Appl. Phys. Lett. 91 102102
[34] Zhu W, Shi Q W, Wang X R, Chen J, Yang J L, and Hou J G 2009 Phys. Rev. Lett. 102 056803
[35] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Ponomarenko L A, Jiang D, and Geim A K 2006 Phys. Rev. Lett. 97 016801
[36] Tikhonenko F V, Horsell D W, Gorbachev R V, and Savchenko A K 2008 Phys. Rev. Lett. 100 056802
[37] Baker A M R, Alexander-Webber J A, Altebaeumer T, Janssen T J B M, Tzalenchuk A, Lara-Avila S, Kubatkin S, Yakimova R, Lin C T, Li L J, and Nicholas R J 2012 Phys. Rev. B 86 235441
[38] McCann E, Kechedzhi K, Fal'ko V I, Suzuura H, Ando T, and Altshuler B L 2006 Phys. Rev. Lett. 97 146805
[39] Ki D K, Jeong D, Choi J H, Lee H J, and Park K S 2008 Phys. Rev. B 78 125409
[40] Liao Z M, Han B H, Wu H C, and Yu D P 2010 Appl. Phys. Lett. 97 163110
[41] Chen Y F, Bae M H, Chialvo C, Dirks T, Bezryadin A, and Mason N 2011 Physica B 406 785
[42] Jauregui L A, Cao H, Wu W, Yu Q, and Chen Y P 2011 Solid State Commun. 151 1100
[43] Ponomarenko L A, Geim A K, Zhukov A A, Jalil R, Morozov S V, Novoselov K S, Grigorieva I V, Hill E H, Cheianov V V, Fal'ko V I, Watanabe K, Taniguchi T, and Gorbachev R V 2011 Nat. Phys. 7 958
[44] Willke P, Amani J A, Sinterhauf A, Thakur S, Kotzott T, Druga T, Weikert S, Maiti K, Hofsass H, and Wenderoth M 2015 Nano Lett. 15 5110
[45] Braatz M L, Veith L, Köster J, Kaiser U, Binder A, Gradhand M, and Kläui M 2021 Phys. Rev. Mater. 5 084003
[46] Altshuler B L, Aronov A G, and Khmelnitsky D E 1982 J. Phys. C 15 7376
[47] Yang S J and Yu Y 2004 Phys. Rev. B 69 233307
[48] Liao J, Ou Y, Feng X, Yang S, Lin C, Yang W, Wu K, He K, Ma X, Xue Q K, and Li Y 2015 Phys. Rev. Lett. 114 216601
[49] Liao J, Shi G, Liu N, and Li Y 2016 Chin. Phys. B 25 117201
Related articles from Frontiers Journals
[1] Li Chen, Dong Yan, Li-Jun Song, Shou Zhang. Dynamics of Quantum Fisher Information in Homodyne-Mediated Feedback Control[J]. Chin. Phys. Lett., 2019, 36(3): 107201
[2] Li-Jun Yang, Yan Li. Pascal Realization by Comb-Spectral-Interferometry Based Refractometer[J]. Chin. Phys. Lett., 2018, 35(10): 107201
[3] LEI Li-Hua, LI Yuan, FAN Guo-Fang, WENG Jun-Jing, DENG Xiao, CAI Xiao-Yu, LI Tong-Bao. Nano-Traceability Study of a Cr Standard Grating Fabricated by Laser-Focused Atomic Deposition[J]. Chin. Phys. Lett., 2014, 31(07): 107201
[4] WANG Xin-Wei**, ZHOU Yan, FAN Song-Tao, LIU Yu-Liang . Temporal Parameter Optimization in Four-Dimensional Flash Trajectory Imaging[J]. Chin. Phys. Lett., 2011, 28(11): 107201
[5] ZHOU Xiao-Ji, CHEN Xu-Zong, CHEN Jing-Biao, WANG Yi-Qiu, LI Jia-Ming. Microwave Atomic Clock in the Optical Lattice with Specific Frequency[J]. Chin. Phys. Lett., 2009, 26(9): 107201
[6] YU De-Shui, ZHUANG Wei, CHEN Jing-Biao. Microlaser with Ramsey Separated Fields Cavity[J]. Chin. Phys. Lett., 2007, 24(6): 107201
[7] ZHENG Yu-Nan, ZHOU Xiao-Ji, CHEN Jing-Biao, CHEN Xu-Zong. Magic Wavelength for Caesium Transition Line 6S1/2-6P3/2[J]. Chin. Phys. Lett., 2006, 23(7): 107201
Viewed
Full text


Abstract