CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Two-Dimensional Thermal Regulation Based on Non-Hermitian Skin Effect |
Qiang-Kai-Lai Huang1,2,3,4, Yun-Kai Liu5, Pei-Chao Cao1,2,3,4, Xue-Feng Zhu5*, and Ying Li1,2,3,4* |
1Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China 2International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China 3Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China 4Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing 312000, China 5School of Physics and Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
|
|
Cite this article: |
Qiang-Kai-Lai Huang, Yun-Kai Liu, Pei-Chao Cao et al 2023 Chin. Phys. Lett. 40 106601 |
|
|
Abstract The non-Hermitian skin effect has been applied in multiple fields. However, there are relatively few models in the field of thermal diffusion that utilize the non-Hermitian skin effect for achieving thermal regulation. Here, we propose two non-Hermitian Su–Schrieffer–Heeger (SSH) models for thermal regulation: one capable of achieving edge states, and the other capable of achieving corner states within the thermal field. By analyzing the energy band structures and the generalized Brillouin zone, we predict the appearance of the non-Hermitian skin effect in these two models. Furthermore, we analyze the time-dependent evolution results and assess the robustness of the models. The results indicate that the localized thermal effects of the models align with our predictions. In a word, this work presents two models based on the non-Hermitian skin effect for regulating the thermal field, injecting vitality into the design of non-Hermitian thermal diffusion systems.
|
|
Received: 25 July 2023
Editors' Suggestion
Published: 26 September 2023
|
|
PACS: |
66.70.-f
|
(Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)
|
|
05.70.-a
|
(Thermodynamics)
|
|
44.10.+i
|
(Heat conduction)
|
|
|
|
|
[1] | Li Y, Li W, Han T et al. 2021 Nat. Rev. Mater. 6 488 |
[2] | Ju R, Xu G, Xu L et al. 2023 Adv. Mater. 35 2209123 |
[3] | Zhang Z R, Xu L J, Qu T et al. 2023 Nat. Rev. Phys. 5 218 |
[4] | Xu L J and Huang J P 2020 Chin. Phys. Lett. 37 120501 |
[5] | Han T C, Bai X, Gao D L et al. 2014 Phys. Rev. Lett. 112 054302 |
[6] | Han T C, Bai X, Thong J T L et al. 2014 Adv. Mater. 26 1731 |
[7] | Xu L J and Huang J P 2020 Int. J. Heat Mass Transfer 159 120133 |
[8] | Zeng L W and Song R X 2014 Appl. Phys. Lett. 104 201905 |
[9] | Xu L J, Yang S, and Huang J P 2019 Phys. Rev. Appl. 11 034056 |
[10] | He X and Wu L Z 2013 Phys. Rev. E 88 033201 |
[11] | Chen F and Yuan L D 2015 Sci. Rep. 5 11552 |
[12] | Shen X Y, Li Y, Jiang C R et al. 2016 Appl. Phys. Lett. 109 031907 |
[13] | Guenneau S, Amra C, and Veynante D 2012 Opt. Express 20 8207 |
[14] | Li Y, Shen X Y, Huang J P et al. 2016 Phys. Lett. A 380 1641 |
[15] | Li Y, Qi M H, Li J X et al. 2022 Nat. Commun. 13 2683 |
[16] | Xu L J, Liu J R, Jin P et al. 2023 Natl. Sci. Rev. 10 nwac159 |
[17] | Li Y, Zhu K J, Peng Y G et al. 2019 Nat. Mater. 18 48 |
[18] | Qi M H, Wang D, Cao P C et al. 2022 Adv. Mater. 34 2202241 |
[19] | Tsang L, Liao T H, and Tan S 2021 Prog. Electromagn. Res. 171 137 |
[20] | Jia D, Wang Y, Ge Y et al. 2021 Prog. Electromagn. Res. 172 13 |
[21] | Xu G Q, Zhou X, Yang S H et al. 2023 Nat. Commun. 14 3252 |
[22] | Wu H T, Hu H, Wang X X et al. 2023 Adv. Mater. 35 2210825 |
[23] | Xu G Q, Li W, Zhou X et al. 2022 Proc. Natl. Acad. Sci. USA 119 e2110018119 |
[24] | Xu L J, Xu G Q, Huang J P et al. 2022 Phys. Rev. Lett. 128 145901 |
[25] | Xu L J, Xu G Q, Li J X et al. 2022 Phys. Rev. Lett. 129 155901 |
[26] | Li Y, Peng Y G, Han L et al. 2019 Science 364 170 |
[27] | Cao P C, Peng Y G, Li Y et al. 2022 Chin. Phys. Lett. 39 057801 |
[28] | Li J X, Li Y, Cao P C et al. 2022 Nat. Commun. 13 167 |
[29] | Hu H, Han S, Yang Y et al. 2022 Adv. Mater. 34 2202257 |
[30] | Li Z P, Cao G T, Li C H et al. 2021 Prog. Electromagn. Res. 171 1 |
[31] | Xu G Q, Li Y, Li W et al. 2021 Phys. Rev. Lett. 127 105901 |
[32] | Zhang X J, Zhang T, Lu M H, and Chen Y F 2022 Adv. Phys.: X 7 2109431 |
[33] | Kawabata K, Sato M, and Shiozaki K 2020 Phys. Rev. B 102 205118 |
[34] | Okugawa R, Takahashi R, and Yokomizo K 2020 Phys. Rev. B 102 241202 |
[35] | Okuma N, Kawabata K, Shiozaki K et al. 2020 Phys. Rev. Lett. 124 086801 |
[36] | Zhang K, Yang Z, and Fang C 2022 Nat. Commun. 13 2496 |
[37] | Yan Q H, Chen H H, and Yang Y H 2021 Prog. Electromagn. Res. 172 33 |
[38] | Cao P C, Li Y, Peng Y G et al. 2021 Commun. Phys. 4 230 |
[39] | Liu Y K, Cao P C, Qi M et al. 2023 arXiv:2308.08839 [physics.class-ph] |
[40] | Yokomizo K and Murakami S 2019 Phys. Rev. Lett. 123 066404 |
[41] | Yokomizo K and Murakami S 2023 Phys. Rev. B 107 195112 |
[42] | Yang Z S, Zhang K, Fang C et al. 2020 Phys. Rev. Lett. 125 226402 |
[43] | Yao S Y and Wang Z 2018 Phys. Rev. Lett. 121 086803 |
[44] | Zhang K, Yang Z S, and Fang C 2020 Phys. Rev. Lett. 125 126402 |
[45] | Xu G Q, Zhou X, Li Y et al. 2023 Phys. Rev. Lett. 130 266303 |
[46] | Xu G Q, Yang Y H, Zhou X et al. 2022 Nat. Phys. 18 450 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|