Chin. Phys. Lett.  2023, Vol. 40 Issue (10): 106601    DOI: 10.1088/0256-307X/40/10/106601
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Two-Dimensional Thermal Regulation Based on Non-Hermitian Skin Effect
Qiang-Kai-Lai Huang1,2,3,4, Yun-Kai Liu5, Pei-Chao Cao1,2,3,4, Xue-Feng Zhu5*, and Ying Li1,2,3,4*
1Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
2International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
3Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
4Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing 312000, China
5School of Physics and Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
Cite this article:   
Qiang-Kai-Lai Huang, Yun-Kai Liu, Pei-Chao Cao et al  2023 Chin. Phys. Lett. 40 106601
Download: PDF(8951KB)   PDF(mobile)(8957KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The non-Hermitian skin effect has been applied in multiple fields. However, there are relatively few models in the field of thermal diffusion that utilize the non-Hermitian skin effect for achieving thermal regulation. Here, we propose two non-Hermitian Su–Schrieffer–Heeger (SSH) models for thermal regulation: one capable of achieving edge states, and the other capable of achieving corner states within the thermal field. By analyzing the energy band structures and the generalized Brillouin zone, we predict the appearance of the non-Hermitian skin effect in these two models. Furthermore, we analyze the time-dependent evolution results and assess the robustness of the models. The results indicate that the localized thermal effects of the models align with our predictions. In a word, this work presents two models based on the non-Hermitian skin effect for regulating the thermal field, injecting vitality into the design of non-Hermitian thermal diffusion systems.
Received: 25 July 2023      Editors' Suggestion Published: 26 September 2023
PACS:  66.70.-f (Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)  
  05.70.-a (Thermodynamics)  
  44.10.+i (Heat conduction)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/10/106601       OR      https://cpl.iphy.ac.cn/Y2023/V40/I10/106601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qiang-Kai-Lai Huang
Yun-Kai Liu
Pei-Chao Cao
Xue-Feng Zhu
and Ying Li
[1] Li Y, Li W, Han T et al. 2021 Nat. Rev. Mater. 6 488
[2] Ju R, Xu G, Xu L et al. 2023 Adv. Mater. 35 2209123
[3] Zhang Z R, Xu L J, Qu T et al. 2023 Nat. Rev. Phys. 5 218
[4] Xu L J and Huang J P 2020 Chin. Phys. Lett. 37 120501
[5] Han T C, Bai X, Gao D L et al. 2014 Phys. Rev. Lett. 112 054302
[6] Han T C, Bai X, Thong J T L et al. 2014 Adv. Mater. 26 1731
[7] Xu L J and Huang J P 2020 Int. J. Heat Mass Transfer 159 120133
[8] Zeng L W and Song R X 2014 Appl. Phys. Lett. 104 201905
[9] Xu L J, Yang S, and Huang J P 2019 Phys. Rev. Appl. 11 034056
[10] He X and Wu L Z 2013 Phys. Rev. E 88 033201
[11] Chen F and Yuan L D 2015 Sci. Rep. 5 11552
[12] Shen X Y, Li Y, Jiang C R et al. 2016 Appl. Phys. Lett. 109 031907
[13] Guenneau S, Amra C, and Veynante D 2012 Opt. Express 20 8207
[14] Li Y, Shen X Y, Huang J P et al. 2016 Phys. Lett. A 380 1641
[15] Li Y, Qi M H, Li J X et al. 2022 Nat. Commun. 13 2683
[16] Xu L J, Liu J R, Jin P et al. 2023 Natl. Sci. Rev. 10 nwac159
[17] Li Y, Zhu K J, Peng Y G et al. 2019 Nat. Mater. 18 48
[18] Qi M H, Wang D, Cao P C et al. 2022 Adv. Mater. 34 2202241
[19] Tsang L, Liao T H, and Tan S 2021 Prog. Electromagn. Res. 171 137
[20] Jia D, Wang Y, Ge Y et al. 2021 Prog. Electromagn. Res. 172 13
[21] Xu G Q, Zhou X, Yang S H et al. 2023 Nat. Commun. 14 3252
[22] Wu H T, Hu H, Wang X X et al. 2023 Adv. Mater. 35 2210825
[23] Xu G Q, Li W, Zhou X et al. 2022 Proc. Natl. Acad. Sci. USA 119 e2110018119
[24] Xu L J, Xu G Q, Huang J P et al. 2022 Phys. Rev. Lett. 128 145901
[25] Xu L J, Xu G Q, Li J X et al. 2022 Phys. Rev. Lett. 129 155901
[26] Li Y, Peng Y G, Han L et al. 2019 Science 364 170
[27] Cao P C, Peng Y G, Li Y et al. 2022 Chin. Phys. Lett. 39 057801
[28] Li J X, Li Y, Cao P C et al. 2022 Nat. Commun. 13 167
[29] Hu H, Han S, Yang Y et al. 2022 Adv. Mater. 34 2202257
[30] Li Z P, Cao G T, Li C H et al. 2021 Prog. Electromagn. Res. 171 1
[31] Xu G Q, Li Y, Li W et al. 2021 Phys. Rev. Lett. 127 105901
[32] Zhang X J, Zhang T, Lu M H, and Chen Y F 2022 Adv. Phys.: X 7 2109431
[33] Kawabata K, Sato M, and Shiozaki K 2020 Phys. Rev. B 102 205118
[34] Okugawa R, Takahashi R, and Yokomizo K 2020 Phys. Rev. B 102 241202
[35] Okuma N, Kawabata K, Shiozaki K et al. 2020 Phys. Rev. Lett. 124 086801
[36] Zhang K, Yang Z, and Fang C 2022 Nat. Commun. 13 2496
[37] Yan Q H, Chen H H, and Yang Y H 2021 Prog. Electromagn. Res. 172 33
[38] Cao P C, Li Y, Peng Y G et al. 2021 Commun. Phys. 4 230
[39] Liu Y K, Cao P C, Qi M et al. 2023 arXiv:2308.08839 [physics.class-ph]
[40] Yokomizo K and Murakami S 2019 Phys. Rev. Lett. 123 066404
[41] Yokomizo K and Murakami S 2023 Phys. Rev. B 107 195112
[42] Yang Z S, Zhang K, Fang C et al. 2020 Phys. Rev. Lett. 125 226402
[43] Yao S Y and Wang Z 2018 Phys. Rev. Lett. 121 086803
[44] Zhang K, Yang Z S, and Fang C 2020 Phys. Rev. Lett. 125 126402
[45] Xu G Q, Zhou X, Li Y et al. 2023 Phys. Rev. Lett. 130 266303
[46] Xu G Q, Yang Y H, Zhou X et al. 2022 Nat. Phys. 18 450
Related articles from Frontiers Journals
[1] Qing Xi, Jinxin Zhong, Jixiong He, Xiangfan Xu, Tsuneyoshi Nakayama, Yuanyuan Wang, Jun Liu, Jun Zhou, and Baowen Li. Erratum: A Ubiquitous Thermal Conductivity Formula for Liquids, Polymer Glass, and Amorphous Solids [Chin. Phys. Lett. 37 (2020) 104401][J]. Chin. Phys. Lett., 2021, 38(3): 106601
[2] Yu Yang , XiuLing Li, and Lifa Zhang . Bidirectional and Unidirectional Negative Differential Thermal Resistance Effect in a Modified Lorentz Gas Model[J]. Chin. Phys. Lett., 2021, 38(1): 106601
[3] Qing Xi, Jinxin Zhong, Jixiong He, Xiangfan Xu, Tsuneyoshi Nakayama, Yuanyuan Wang, Jun Liu, Jun Zhou, and Baowen Li. A Ubiquitous Thermal Conductivity Formula for Liquids, Polymer Glass, and Amorphous Solids[J]. Chin. Phys. Lett., 2020, 37(10): 106601
[4] Wen-Xue Xu, Xin-Gang Liang. Molecular Dynamics Simulation of Effects of Stretching and Compressing on Thermal Conductivity of Aligned Silicon Oxygen Chains[J]. Chin. Phys. Lett., 2020, 37(4): 106601
[5] MING Yi, DING Xing. Quantum Heat Transfer in a Harmonic Chain with a Dephasing Reservoir[J]. Chin. Phys. Lett., 2014, 31(08): 106601
[6] DING Xing, MING Yi. Mechanisms Causing Ballistic Thermal Rectification[J]. Chin. Phys. Lett., 2014, 31(04): 106601
[7] BAI Su-Yuan, TANG Zhen-An, HUANG Zheng-Xing, Yu Jun, WANG Jing, LIU Gui-Chang. Preparation and Thermal Characterization of Diamond-Like Carbon Films[J]. Chin. Phys. Lett., 2009, 26(7): 106601
[8] BAI Su-Yuan, TANG Zhen-An, HUANG Zheng-Xing, YU Jun, WANG Jia-Qi. Thermal Conductivity Measurement of Submicron-Thick Aluminium Oxide Thin Films by a Transient Thermo-Reflectance Technique[J]. Chin. Phys. Lett., 2008, 25(2): 106601
[9] XU Xiao-Dong, MA Di, ZHANG Shu-Yi, LUO Ai-Hua, KIYOTAKA Wasa,. Thermal Diffusivity of Film/Substrate Structures Characterized by Transient Thermal Grating Method[J]. Chin. Phys. Lett., 2008, 25(1): 106601
Viewed
Full text


Abstract