CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Nontrivial Topological States in BaSn$_{5}$ Superconductor Probed by de Haas–van Alphen Quantum Oscillations |
Lixuesong Han1†, Xianbiao Shi2,3†, Jinlong Jiao4, Zhenhai Yu1, Xia Wang1,5, Na Yu1,5, Zhiqiang Zou1,5, Jie Ma4, Weiwei Zhao2,3, Wei Xia1,6*, and Yanfeng Guo1,6* |
1School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China 2State Key Laboratory of Advanced Welding & Joining and Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, China 3Shenzhen Key Laboratory of Flexible Printed Electronics Techniology, Harbin Institute of Technology, Shenzhen 518055, China 4Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China 5Analytical Instrumentation Center, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China 6ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
|
|
Cite this article: |
Lixuesong Han, Xianbiao Shi, Jinlong Jiao et al 2022 Chin. Phys. Lett. 39 067101 |
|
|
Abstract We report the nontrivial topological states in an intrinsic type-II superconductor BaSn$_{\boldsymbol{5}}$ ($T_{\rm{c}} \sim 4.4$ K) probed by measuring the magnetization, specific heat, de Haas–van Alphen (dHvA) effect, and by performing first-principles calculations. The first-principles calculations reveal a topological nodal ring structure centered at the $H$ point in the $k_{\rm{z}} = \pi$ plane of the Brillouin zone, which could be gapped by spin-orbit coupling (SOC), yielding relatively small gaps below and above the Fermi level of about 0.04 eV and 0.14 eV, respectively. The SOC also results in a pair of Dirac points along the $\varGamma$–$A$ direction, located at $\sim $0.2 eV above the Fermi level. The analysis of the dHvA quantum oscillations supports the calculations by revealing a nontrivial Berry phase originating from the hole and electron pockets related to the bands forming the Dirac cones. Thus, our study provides an excellent avenue for investigating the interplay between superconductivity and nontrivial topological states.
|
|
Received: 23 February 2022
Published: 29 May 2022
|
|
PACS: |
71.18.+y
|
(Fermi surface: calculations and measurements; effective mass, g factor)
|
|
74.70.Ad
|
(Metals; alloys and binary compounds)
|
|
72.20.My
|
(Galvanomagnetic and other magnetotransport effects)
|
|
74.25.-q
|
(Properties of superconductors)
|
|
|
|
|
[1] | Wilczek F 2009 Nat. Phys. 5 614 |
[2] | Sato M and Ando Y 2017 Rep. Prog. Phys. 80 076501 |
[3] | Stern A 2010 Nature 464 187 |
[4] | Nayak C, Simon S H, Stern A, Freedman M, and Das S S 2008 Rev. Mod. Phys. 80 1083 |
[5] | Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 |
[6] | Leijnse M and Flensberg K 2012 Semicond. Sci. Technol. 27 124003 |
[7] | Kopnin N B and Salomaa M M 1991 Phys. Rev. B 44 9667 |
[8] | Read N and Green D 2000 Phys. Rev. B 61 10267 |
[9] | Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407 |
[10] | Mackenzie A P and Maeno Y 2003 Rev. Mod. Phys. 75 657 |
[11] | Wang M X, Liu C, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F, and Xue Q K 2012 Science 336 52 |
[12] | Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, and Jia J F 2015 Phys. Rev. Lett. 114 017001 |
[13] | Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C, and Jia J F 2016 Phys. Rev. Lett. 116 257003 |
[14] | Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H, and Shin S 2018 Science 360 182 |
[15] | Wang Z, Zhang P, Xu G, Zeng L K, Miao H, Xu X, Qian T, Weng H, Richard P, Fedorov A V, Ding H, Dai X, and Fang Z 2015 Phys. Rev. B 92 115119 |
[16] | Kong L, Zhu S, Papaj M, Chen H, Cao L, Isobe H, Xing Y, Liu W, Wang D, Fan P, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Gao H J, and Ding H 2019 Nat. Phys. 15 1181 |
[17] | Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H, and Gao H J 2018 Science 362 333 |
[18] | Chen C, Liu Q, Zhang T Z, Li D, Shen P P, Dong X L, Zhao Z X, Zhang T, and Feng D L 2019 Chin. Phys. Lett. 36 057403 |
[19] | Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X, and Feng D L 2018 Phys. Rev. X 8 041056 |
[20] | Liu W, Cao L, Zhu S, Kong L, Wang G, Papaj M, Zhang P, Liu Y B, Chen H, Li G, Yang F, Kondo T, Du S, Cao G H, Shin S, Fu L, Yin Z, Gao H J, and Ding H 2020 Nat. Commun. 11 5688 |
[21] | Kong L, Cao L, Zhu S, Papaj M, Dai G, Li G, Fan P, Liu W, Yang F, Wang X, Du S, Jin C, Fu L, Gao H J, and Ding H 2021 Nat. Commun. 12 4146 |
[22] | Xia W, Shi X B, Zhang Y, Su H, Wang Q, Ding L C, Chen L M, Wang X, Zou Z Q, Yu N, Pi L, Hao Y F, Li B, Zhu Z W, Zhao W W, Kou X F, and Guo Y F 2020 Phys. Rev. B 101 155117 |
[23] | Chen C, Liang A J, Liu S, Nie S M, Huang J W, Wang M X, Li Y W, Pei D, Yang H F, Zheng H J, Zhang Y, Lu D H, Hashimoto M, Barinov A, Jozwiak C, Bostwick A, Rotenberg E, Kou X F, Yang L X, Guo Y F, Wang Z J, Yuan H T, Liu Z K, and Chen Y L 2020 Matter 3 2055 |
[24] | Zhang G N, Shi X B, Liu X L, Xia W, Su H, Chen L M, Wang X, Yu N, Zou Z Q, Zhao W W, and Guo Y F 2020 Chin. Phys. Lett. 37 087101 |
[25] | Huang Z, Shi X B, Zhang G N, Liu Z T, Soohyun C, Jiang Z C, Liu Z H, Liu J S, Yang Y C, Xia W, Zhao W W, Guo Y F, and Shen D W 2021 Chin. Phys. Lett. 38 107403 |
[26] | Huang K, Luo A Y, Chen C, Zhang G N, Liu X L, Li Y W, Wu F, Cui S T, Sun Z, Jozwiak C, Bostwick A, Rotenberg E, Yang H F, Yang L X, Xu G, Guo Y F, Liu Z K, and Chen Y L 2021 Phys. Rev. B 103 155148 |
[27] | Xu L X, Xia Y Y Y, Liu S, Li Y W, Wei L Y, Wang H Y, Wang C W, Yang H F, Liang A J, Huang K, Deng T, Xia W, Zhang X, Zheng H J, Chen Y J, Yang L X, Wang M X, Guo Y F, Li G, Liu Z K, and Chen Y L 2021 Phys. Rev. B 103 L201109 |
[28] | Yang H F, Liu X L, Nie S M, Shi W J, Huang K, Zheng H J, Zhang J, Li Y W, Liang A J, Wang M X, Yang L X, Guo Y F, L, Z K, and Chen Y L 2021 Phys. Rev. B 104 L220501 |
[29] | Yuan Y, Pan J, Wang X, Fang Y, Song C, Wang L, He K, Ma X, Zhang H, Huang F, Li W, and Xue Q K 2019 Nat. Phys. 15 1046 |
[30] | Fässler T F, Hoffmann S, and Kronseder C 2001 Z. Anorg. Allg. Chem. 627 2486 |
[31] | Lin X, Bud'ko S L, and Canfield P C 2012 Philos. Mag. 92 3006 |
[32] | Billington D, Ernsting D, Millichamp T E, and Dugdale S B 2015 Philos. Mag. 95 1728 |
[33] | Siddiquee K A M H, Munir R, Dissanayake C, Hu X Z, Yadav S, Takano Y, Choi E S, Le D, Rahman T S, and Nakajima Y 2021 arXiv:2103.08039v1 [cond-mat.supr-con] |
[34] | Siddiquee K A M H, Munir R, Dissanayake C et al. 2019 arXiv:1901.02087v1 [cond-mat.supr-con] |
[35] | Luo X, Shao D F, Pei Q L, Song J Y, Hu L, Han Y Y, Zhu X B, Song W H, Lu W J, and Sun Y P 2015 J. Mater. Chem. C 3 11432 |
[36] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[37] | Lehtomäki J, Makkonen I, Caro M A, Harju A, and Lopez-Acevedo O J 2014 Chem. Phys. 141 234102 |
[38] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[39] | Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244 |
[40] | Kresse G and Hafner J 1993 Phys. Rev. B 47 558 |
[41] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 |
[42] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[43] | Mikitik G P and Sharlai Y V 1999 Phys. Rev. Lett. 82 2147 |
[44] | Hu J, Tang Z, Liu J, Liu X, Zhu Y, Graf D, Myhro K, Tran S, Lau C N, Wei J, and Mao Z 2016 Phys. Rev. Lett. 117 016602 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|