ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Generalized Aubry–André–Harper Models in Optical Superlattices |
Yi Li1,2, Jia-Hui Zhang1,2, Feng Mei1,2*, Jie Ma1,2, Liantuan Xiao1,2, and Suotang Jia1,2 |
1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
|
|
Cite this article: |
Yi Li, Jia-Hui Zhang, Feng Mei et al 2022 Chin. Phys. Lett. 39 063701 |
|
|
Abstract Ultracold atoms trapped in optical superlattices provide a simple platform for realizing the seminal Aubry–André–Harper (AAH) model. However, this model ignores the periodic modulations on the nearest-neighbor hoppings. We establish a generalized AAH model by which an optical superlattice system can be approximately described when $V_1\gg V_2$, with periodic modulations on both on-site energies and nearest-neighbor hoppings. This model supports much richer topological properties absent in the standard AAH model. Specifically, by calculating the Chern numbers and topological edge states, we show that the generalized AAH model possesses multifarious topological phases and topological phase transitions, unlike the standard AAH model supporting only a single topological phase. Our findings can uncover more opportunities for using optical superlattices to study topological and localization physics.
|
|
Received: 29 March 2022
Published: 29 May 2022
|
|
PACS: |
37.10.Jk
|
(Atoms in optical lattices)
|
|
|
|
|
[1] | Goldman N, Budich J C, and Zoller P 2016 Nat. Phys. 12 639 |
[2] | Zhang D W, Zhu Y Q, Zhao Y X, Yan H, and Zhu S L 2019 Adv. Phys. 67 253 |
[3] | Cooper N R, Dalibard J, and Spielman I B 2019 Rev. Mod. Phys. 91 015005 |
[4] | Boada O, Celi A, Latorre J I, and Lewenstein M 2012 Phys. Rev. Lett. 108 133001 |
[5] | Celi A, Massignan P, Ruseckas J, Goldman N, Spielman I B, Juzeliūnas G, and Lewenstein M 2014 Phys. Rev. Lett. 112 043001 |
[6] | Mancini M, Pagano G, Cappellini G, Livi L, Rider M, Catani J, Sias C, Zoller P, Inguscio M, Dalmonte M, and Fallani L 2015 Science 349 1510 |
[7] | Stuhl B K, Lu H I, Aycock L M, Genkina D, and Spielman I B 2015 Science 349 1514 |
[8] | Chalopin T, Satoor T, Evrard A, Mahkalov V, Dalibard J, Lopes R, and Nascimbene S 2020 Nat. Phys. 16 1017 |
[9] | Wall M L, Koller A P, Li S, Zhang X, Cooper N R, Ye J, and Rey A M 2016 Phys. Rev. Lett. 116 035301 |
[10] | Livi L F, Cappellini G, Diem M, Franchi L, Clivati C, Frittelli M, Levi F, Calonico D, Catani J, Inguscio M, and Fallani L 2016 Phys. Rev. Lett. 117 220401 |
[11] | Kolkowitz S, Bromley S, Bothwell T, Wall M L, Marti G E, Koller A P, Zhang X, Rey A M, and Ye J 2017 Nature 542 66 |
[12] | Kanungo S K, Whalen J D, Lu Y, Yuan M, Dasgupta S, Dunning F B, Hazzard K R A, and Killian T C 2022 Nat. Commun. 13 972 |
[13] | Meier E, An F, and Gadway B 2016 Nat. Commun. 7 13986 |
[14] | Li Y, Zhang J, Wang Y, Du H, Wu J, Liu W, Mei F, Ma J, Xiao L, and Jia S 2022 Light: Sci. & Appl. 11 13 |
[15] | Kang J H, Han J H, and Shin Y 2020 New J. Phys. 22 013023 |
[16] | Wang D W, Liu R B, Zhu S Y, and Scully M O 2015 Phys. Rev. Lett. 114 043602 |
[17] | Chen L, Wang P, Meng Z, Huang L, Cai H, Wang D W, Zhu S Y, and Zhang J 2018 Phys. Rev. Lett. 120 193601 |
[18] | Cai H, Liu J, Wu J, He Y, Zhu S Y, Zhang J X, and Wang D W 2019 Phys. Rev. Lett. 122 023601 |
[19] | He Y, Mao R, Cai H, Zhang J X, Li Y, Yuan L, Zhu S Y, and Wang D W 2021 Phys. Rev. Lett. 126 103601 |
[20] | Mi C, Nawaz K S, Chen L, Wang P, Cai H, Wang D W, Zhu S Y, and Zhang J 2021 Phys. Rev. A 104 043326 |
[21] | Fabre A, Bouhiron J B, Satoor T, Lopes R, and Nascimbene S 2021 arXiv:2110.12971v1 [cond-mat.quant-gas] |
[22] | Lang L J, Cai X, and Chen S 2012 Phys. Rev. Lett. 108 220401 |
[23] | Mei F, Zhu S L, Zhang Z M, Oh C H, and Goldman N 2012 Phys. Rev. A 85 013638 |
[24] | Hofstadter D R 1976 Phys. Rev. B 14 2239 |
[25] | Aubry S and André G 1980 Ann. Isr. Phys. Soc. 3 133 |
[26] | Grempel D R, Fishman S, and Prange R E 1982 Phys. Rev. Lett. 49 833 |
[27] | Modugno M 2009 New J. Phys. 11 033023 |
[28] | Biddle J, Wang B, Jr Priour D J, and Sarma S D 2009 Phys. Rev. A 80 021603(R) |
[29] | Biddle J, Priour Jr D J, Wang B, and Sarma S D 2011 Phys. Rev. B 83 075105 |
[30] | Larcher M, Modugno M, and Dalfovo F 2011 Phys. Rev. A 83 013624 |
[31] | Zhou L, Pu H, and Zhang W 2013 Phys. Rev. A 87 023625 |
[32] | Qin P, Yin C, and Chen S 2014 Phys. Rev. B 90 054303 |
[33] | Li X, Ganeshan S, Pixley J H, and Sarma S D 2015 Phys. Rev. Lett. 115 186601 |
[34] | Li X, Pixley J H, Deng D L, Ganeshan S, and Sarma S D 2016 Phys. Rev. B 93 184204 |
[35] | Cao Y, Xianlong G, Liu X J, and Hu H 2016 Phys. Rev. A 93 043621 |
[36] | Yang C, Wang Y, Wang P, Gao X, and Chen S 2017 Phys. Rev. B 95 184201 |
[37] | Li X, Li X, and Sarma S D 2017 Phys. Rev. B 96 085119 |
[38] | Li X and Sarma S D 2020 Phys. Rev. B 101 064203 |
[39] | Yin H, Hu J, Ji A C, nas G J Liu X J, and Sun Q 2020 Phys. Rev. Lett. 124 113601 |
[40] | Roati G, D'Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M, and Inguscio M 2008 Nature 453 895 |
[41] | Kraus Y E, Lahini Y, Ringel Z, Verbin M, and Zilberberg O 2012 Phys. Rev. Lett. 109 106402 |
[42] | Zeng Q B, Yang Y B, and Xu Y 2020 Phys. Rev. B 101 020201(R) |
[43] | Zeng Q B, Yang Y B, and Xu Y 2020 Phys. Rev. B 101 241104(R) |
[44] | Ganeshan S, Sun K, and Sarma S D 2013 Phys. Rev. Lett. 110 180403 |
[45] | Cestari J C C, Foerster A, and Gusmao M A 2016 Phys. Rev. B 93 205441 |
[46] | Liu T, Wang P, and Gao X 2016 arXiv:1609.06939 [cond-mat.dis-nn] |
[47] | Lohse M, Schweizer C, Zilberberg O, Aidelsburger M, and Bloch I 2016 Nat. Phys. 12 350 |
[48] | Nakajima S, Tomita T, Taie S, Ichinose T, Ozawa H, Wang L, Troyer M, and Takahashi Y 2016 Nat. Phys. 12 296 |
[49] | Lu H I, Schemmer M, Aycock L M, Genkina D, Sugawa S, and Spielman I B 2016 Phys. Rev. Lett. 116 200402 |
[50] | Lohse M, Schweizer C, Price H M, Zilberberg O, and Bloch I 2018 Nature 553 55 |
[51] | Wang L, Troyer M, and Dai X 2013 Phys. Rev. Lett. 111 026802 |
[52] | Mei F, You J B, Zhang D W, Yang X C, Fazio R, Zhu S L, and Kwek L C 2014 Phys. Rev. A 90 063638 |
[53] | Wei R and Mueller E J 2015 Phys. Rev. A 92 013609 |
[54] | Ke Y, Qin X, Mei F, Zhong H, Kivshar Y S, and Lee C 2016 Laser & Photon. Rev. 10 995 |
[55] | Ke Y, Qin X, Kivshar Y S, and Lee C 2017 Phys. Rev. A 95 063630 |
[56] | Hayward A, Schweizer C, Lohse M, Aidelsburger M, and Meisner F H 2018 Phys. Rev. B 98 245148 |
[57] | Mei F, Chen G, Goldman N, Xiao L, and Jia S 2019 New J. Phys. 21 095002 |
[58] | Chen Q, Cai J, and Zhang S 2020 Phys. Rev. A 101 043614 |
[59] | Goldman N, Dalibard J, Dauphin A, Gerbier F, Lewenstein M, Zoller P, and Spielman I B 2013 Proc. Natl. Acad. Sci. USA 110 6736 |
[60] | Leder M, Grossert C, Sitta L, Genske M, Rosch A, and Weitz M 2016 Nat. Commun. 7 13112 |
[61] | Goldman N, Beugnon J, and Gerbier F 2012 Phys. Rev. Lett. 108 255303 |
[62] | Kraus Y E, Ringel Z, and Zilberberg O 2013 Phys. Rev. Lett. 111 226401 |
[63] | Price H M, Zilberberg O, Ozawa T, Carusotto I, and Goldman N 2015 Phys. Rev. Lett. 115 195303 |
[64] | Ganeshan S, Pixley J H, and Sarma S D 2015 Phys. Rev. Lett. 114 146601 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|