CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Emergence of Superconductivity on the Border of Antiferromagnetic Order in RbMn$_{6}$Bi$_{5}$ under High Pressure: A New Family of Mn-Based Superconductors |
Peng-Tao Yang1,2†, Qing-Xin Dong1,2†, Peng-Fei Shan1,2†, Zi-Yi Liu1,2†, Jian-Ping Sun1,2, Zhi-Ling Dun1,2, Yoshiya Uwatoko3, Gen-Fu Chen1,2*, Bo-Sen Wang1,2*, and Jin-Guang Cheng1,2* |
1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China 3Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
|
|
Cite this article: |
Peng-Tao Yang, Qing-Xin Dong, Peng-Fei Shan et al 2022 Chin. Phys. Lett. 39 067401 |
|
|
Abstract We report the discovery of superconductivity on the border of antiferromagnetic order in a quasi-one-dimensional material RbMn$_{6}$Bi$_{5}$ via measurements of resistivity and magnetic susceptibility under high pressures. Its phase diagram of temperature versus pressure resembles those of many magnetism-mediated superconducting systems. With increasing pressure, its antiferromagnetic ordering transition with $T_{\rm N} = 83$ K at ambient pressure is first enhanced moderately and then suppressed completely at a critical pressure of $P_{\rm c} \approx 13$ GPa, around which bulk superconductivity emerges and exhibits a dome-like $T_{\rm c}(P)$ with a maximal $T_{\rm c}^{\rm onset} \approx 9.5$ K at about 15 GPa. In addition, the superconducting state around $P_{\rm c}$ is characterized by a large upper critical field $\mu_{0}H_{\rm c2}(0)$ exceeding the Pauli paramagnetic limit, implying a possible unconventional paring mechanism. The present study, together with our recent work on KMn$_{6}$Bi$_{5}$ (the maximum $T_{\rm c}^{\rm onset} \approx 9.3$ K), makes $A$Mn$_{6}$Bi$_{5}$ ($A$ = alkali metal) a new family of Mn-based superconductors with relatively high $T_{\rm c}$.
|
|
Received: 28 March 2022
Editors' Suggestion
Published: 05 May 2022
|
|
PACS: |
74.70.Dd
|
(Ternary, quaternary, and multinary compounds)
|
|
74.62.Fj
|
(Effects of pressure)
|
|
74.40.Kb
|
(Quantum critical phenomena)
|
|
|
|
|
[1] | Bednorz J G and Müller K A 1986 Z. Phys. B: Condens. Matter 64 189 |
[2] | Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T, and Hosono H 2006 J. Am. Chem. Soc. 128 10012 |
[3] | Kamihara Y, Watanabe T, Hirano M, and Hosono H 2008 J. Am. Chem. Soc. 130 3296 |
[4] | Cheng J G, Matsubayashi K, Wu W, Sun J P, Lin F K, Luo J L, and Uwatoko Y 2015 Phys. Rev. Lett. 114 117001 |
[5] | Liu Z Y, Dong Q X, Yang P T, Shan P F, Wang B S, Sun J P, Dun Z L, Uwatoko Y, Chen G F, Dong X L, Zhao Z X, and Cheng J G 2022 Phys. Rev. Lett. 128 187001 |
[6] | Gegenwart P, Si Q, and Steglich F 2008 Nat. Phys. 4 186 |
[7] | Stewart G R 2011 Rev. Mod. Phys. 83 1589 |
[8] | Keimer B, Kivelson S A, Norman M R, Uchida S, and Zaanen J 2015 Nature 518 179 |
[9] | Bao J K, Tang Z T, Jung H J, Liu J Y, Liu Y, Li L, Li Y K, Xu Z A, Feng C M, Chen H, Chung D Y, Dravid V P, Cao G H, and Kanatzidis M G 2018 J. Am. Chem. Soc. 140 4391 |
[10] | Chen L, Zhao L, Qiu X, Zhang Q, Liu K, Lin Q, and Wang G 2021 Inorg. Chem. 60 12941 |
[11] | Zhou Y, Chen L, Wang G, Wang Y X, Wang Z C, Chai C C, Guo Z N, Hu J P, and Chen X L 2022 Chin. Phys. Lett. 39 047401 |
[12] | Matsuda M, Ye F, Dissanayake S E, Cheng J G, Chi S, Ma J, Zhou H D, Yan J Q, Kasamatsu S, Sugino O, Kato T, Matsubayashi K, Okada T, and Uwatoko Y 2016 Phys. Rev. B 93 100405(R) |
[13] | Taddei K M, Xing G, Sun J, Fu Y, Li Y, Zheng Q, Sefat A S, Singh D J, and de la Cruz C 2018 Phys. Rev. Lett. 121 187002 |
[14] | Cuono G, Forte F, Romano A, Ming X, Luo J, Autieri C, and Noce C 2021 Phys. Rev. Mater. 5 064402 |
[15] | Bao J K, Liu J Y, Ma C W, Meng Z H, Tang Z T, Sun Y L, Zhai H F, Jiang H, Bai H, Feng C M, Xu Z A, and Cao G H 2015 Phys. Rev. X 5 011013 |
[16] | Uwatoko Y, Matsubayashi K, Matsumoto T, Aso N, Nishi M, Fujiwara T, Hedo M, Tabata S, Takagi K, Tado M, and Kagi H 2008 Rev. High Press. Sci. Technol. 18 230 |
[17] | Cheng J G, Matsubayashi K, Nagasaki S, Hisada A, Hirayama T, Hedo M, Kagi H, and Uwatoko Y 2014 Rev. Sci. Instrum. 85 093907 |
[18] | Tinkham M 1963 Phys. Rev. 129 2413 |
[19] | Clogston A M 1962 Phys. Rev. Lett. 9 266 |
[20] | Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17 |
[21] | Gurevich A 2003 Phys. Rev. B 67 184515 |
[22] | Hunte F, Jaroszynski J, Gurevich A, Larbalestier D C, Jin R, Sefat A S, McGuire M A, Sales B C, Christen D K, and Mandrus D 2008 Nature 453 903 |
[23] | Chen K Y, Wang N N, Yin Q W, Gu Y H, Jiang K, Tu Z J, Gong C S, Uwatoko Y, Sun J P, Lei H C, Hu J P, and Cheng J G 2021 Phys. Rev. Lett. 126 247001 |
[24] | Hung T L, Huang C H, Deng L Z, Ou M N, Chen Y Y, Wu M K, Huyan S Y, Chu C W, Chen P J, and Lee T K 2021 Nat. Commun. 12 5436 |
[25] | Norman M 2015 Physics 8 24 |
[26] | Wu X, Yang F, Le C, Fan H, and Hu J 2015 Phys. Rev. B 92 104511 |
[27] | Yang J, Luo J, Yi C, Shi Y, Zhou Y, and Zheng G Q 2021 Sci. Adv. 7 eabl4432 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|