Chin. Phys. Lett.  2022, Vol. 39 Issue (11): 118501    DOI: 10.1088/0256-307X/39/11/118501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics
Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan*, and Qing Wan*
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Cite this article:   
Yue Li, Li Zhu, Chunsheng Chen et al  2022 Chin. Phys. Lett. 39 118501
Download: PDF(2244KB)   PDF(mobile)(2242KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High-performance amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs) gated by Al$_{2}$O$_{3}$/ HfO$_{2}$ stacked dielectric films are investigated. The optimized TFTs with Al$_{2}$O$_{3}$ (2.0 nm)/HfO$_{2}$ (13 nm) stacked gate dielectrics demonstrate the best performance, including low total trap density $N_{\rm t}$, low subthreshold swing voltage, large switching ratio $I_{\rm ON/OFF}$, high mobility $\mu_{_{\scriptstyle \rm FE}}$, and low operating voltage, equal to $1.35 \times 10^{12}$ cm$^{-2}$, 88 mV/dec, $5.24 \times 10^{8}$, 14.2 cm$^{2}$/V$\cdot$s, and 2.0 V, respectively. Furthermore, a low-voltage-operated resistor-loaded inverter has been fabricated based on such an a-IGZO TFT, showing ideal full swing characteristics and high gain of $\sim $27 at 3.0 V. These results indicate a-IGZO TFTs gated by optimized Al$_{2}$O$_{3}$/HfO$_{2}$ stacked dielectrics are of great interests for low-power, high performance, and large-area display and emerging electronics.
Received: 04 September 2022      Published: 19 October 2022
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  77.55.D (High-permittivity gate dielectric films)  
  81.05.Gc (Amorphous semiconductors)  
  73.20.At (Surface states, band structure, electron density of states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/11/118501       OR      https://cpl.iphy.ac.cn/Y2022/V39/I11/118501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yue Li
Li Zhu
Chunsheng Chen
Ying Zhu
Changjin Wan
and Qing Wan
[1] Kamiya T, Nomura K, Hosono H et al. 2009 J. Disp. Technol. 5 273
[2] Fan C L, Shang M C, Li B J et al. 2014 Materials 7 5761
[3] Li Y R, Yin K, Diao Y et al. 2022 Nanoscale 14 2316
[4] Hsu C M, Tzou W C, Yang C F et al. 2015 Materials 8 2769
[5] Fan C L, Shang M C, Li B J, Lin Y Z, Wang S J, Lee W D, Hung B R et al. 2015 Materials 8 1704
[6] Hu W N, Jiang J, Xie D D et al. 2018 Nanoscale 10 14893
[7] Su H, Ma Y X, Lai P T et al. 2019 IEEE Electron Device Lett. 40 1953
[8] Kim T, Nam Y, Hur J et al. 2016 IEEE Electron Device Lett. 37 1131
[9] Zhu L, He G, Long Y et al. 2018 IEEE Trans. Electron Devices 65 2870
[10] Kim J B, Fuentes-Hernandez C et al. 2009 Appl. Phys. Lett. 94 142107
[11] Chang S, Song Y W, Lee S et al. 2008 Appl. Phys. Lett. 92 192104
[12] Alshammari F, Nayak P et al. 2016 ACS Appl. Mater. & Interfaces 8 22751
[13] Mikhelashvili V and Eisenstein G 2007 Thin Solid Films 515 3704
[14] Wang X N, Zhang X Q, Du J et al. 2011 Mater. Sci. Forum 687 209
[15] Cho M H, Roh Y S, Whang C N et al. 2002 Appl. Phys. Lett. 81 1071
[16] Hsieh H H and Wu C C 2006 Appl. Phys. Lett. 89 041109
[17] Chen R S, Zhou W, Zhang M et al. 2012 Thin Solid Films 520 6681
[18] Chen Y Y, Liu Y, Wu Z H, Wang L, Li B, En Y F, and Chen Y Q 2018 Chin. Phys. Lett. 35 048502
[19] Lee S Y, Chang S, Lee J S et al. 2010 Thin Solid Films 518 3030
[20] Verlaak S, Arkhipov V, Heremans P et al. 2003 Appl. Phys. Lett. 82 745
[21] Lee K Y, Lee W C, Lee Y J et al. 2006 Appl. Phys. Lett. 89 222906
[22] Kukli K, Ritala M, Lu J, Hårsta A, and Leskelä M 2004 J. Electrochem. Soc. 151 F189
[23] Shan F, Liu A, Liu G et al. 2015 J. Disp. Technol. 11 541
[24] Lee J M, Cho I T, Lee J H et al. 2009 Appl. Phys. Lett. 94 222112
[25] Huang X M, Wu C F, Lu H et al. 2015 Chin. Phys. Lett. 32 077303
[26] Rawat A, Gupta A K, Rawat B et al. 2021 IEEE Trans. Electron Devices 68 3622
[27] Li Y S, He J C, Hsu S M et al. 2016 IEEE Electron Device Lett. 37 46
Related articles from Frontiers Journals
[1] Ming-Liang Zhang , Xu-Ming Zou , and Xing-Qiang Liu. Surface Modification for WSe$_{2}$ Based Complementary Electronics[J]. Chin. Phys. Lett., 2020, 37(11): 118501
[2] Wen-Jian Shi, Ze-Ming Kan, Chuan-Hui Cheng, Wen-Hui Li, Hang-Qi Song, Meng Li, Dong-Qi Yu, Xiu-Yun Du, Wei-Feng Liu, Sheng-Ye Jin, and Shu-Lin Cong. Antimony Selenide Thin Film Solar Cells with an Electron Transport Layer of Alq$_{3}$[J]. Chin. Phys. Lett., 2020, 37(10): 118501
[3] Bojing Lu, Rumin Liu, Siqin Li, Rongkai Lu, Lingxiang Chen, Zhizhen Ye, and Jianguo Lu. Room-Temperature Processed Amorphous ZnRhCuO Thin Films with p-Type Transistor and Gas-Sensor Behaviors[J]. Chin. Phys. Lett., 2020, 37(9): 118501
[4] Hang Yang, Wei Chen, Ming-Yang Li, Feng Xiong, Guang Wang, Sen Zhang, Chu-Yun Deng, Gang Peng, and Shi-Qiao Qin. Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-$\kappa$ Al$_{2}$O$_{3}$ Dielectrics on Graphene[J]. Chin. Phys. Lett., 2020, 37(7): 118501
[5] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes[J]. Chin. Phys. Lett., 2020, 37(6): 118501
[6] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 118501
[7] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes *[J]. Chin. Phys. Lett., 0, (): 118501
[8] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 118501
[9] Bin Wang, Hao-Yu Kong, Lei Sun. Performance Analyses of Planar Schottky Barrier MOSFETs with Dual Silicide Layers at Source/Drain on Bulk Substrates and Material Studies of ErSi$_{x}$/CoSi$_{2}$/Si Stack Interface[J]. Chin. Phys. Lett., 2020, 37(3): 118501
[10] Ashkan Horri, Rahim Faez. Full-Quantum Simulation of Graphene Self-Switching Diodes[J]. Chin. Phys. Lett., 2019, 36(6): 118501
[11] Junkang Li, Yiming Qu, Siyu Zeng, Ran Cheng, Rui Zhang, Yi Zhao. Ge Complementary Tunneling Field-Effect Transistors Featuring Dopant Segregated NiGe Source/Drain[J]. Chin. Phys. Lett., 2018, 35(11): 118501
[12] Li-Hua Dai, Da-Wei Bi, Zheng-Xuan Zhang, Xin Xie, Zhi-Yuan Hu, Hui-Xiang Huang, Shi-Chang Zou. Metastable Electron Traps in Modified Silicon-on-Insulator Wafer[J]. Chin. Phys. Lett., 2018, 35(5): 118501
[13] Jie Fan, Sheng-Ming Sun, Hai-Zhu Wang, Yong-Gang Zou. Low Specific On-Resistance SOI LDMOS with Non-Depleted Embedded P-Island and Dual Trench Gate[J]. Chin. Phys. Lett., 2018, 35(3): 118501
[14] Yi Zhang, Gen-Quan Han, Yan Liu, Huan Liu, Jin-Cheng Zhang, Yue Hao. Ohmic Contact at Al/TiO$_{2}$/n-Ge Interface with TiO$_{2}$ Deposited at Extremely Low Temperature[J]. Chin. Phys. Lett., 2018, 35(2): 118501
[15] Li Zhang, Jin-Feng Zhang, Wei-Hang Zhang, Tao Zhang, Lei Xu, Jin-Cheng Zhang, Yue Hao. Robust Performance of AlGaN-Channel Metal-Insulator-Semiconductor High-Electron-Mobility Transistors at High Temperatures[J]. Chin. Phys. Lett., 2017, 34(12): 118501
Viewed
Full text


Abstract