CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics |
Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan*, and Qing Wan* |
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China |
|
Cite this article: |
Yue Li, Li Zhu, Chunsheng Chen et al 2022 Chin. Phys. Lett. 39 118501 |
|
|
Abstract High-performance amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs) gated by Al$_{2}$O$_{3}$/ HfO$_{2}$ stacked dielectric films are investigated. The optimized TFTs with Al$_{2}$O$_{3}$ (2.0 nm)/HfO$_{2}$ (13 nm) stacked gate dielectrics demonstrate the best performance, including low total trap density $N_{\rm t}$, low subthreshold swing voltage, large switching ratio $I_{\rm ON/OFF}$, high mobility $\mu_{_{\scriptstyle \rm FE}}$, and low operating voltage, equal to $1.35 \times 10^{12}$ cm$^{-2}$, 88 mV/dec, $5.24 \times 10^{8}$, 14.2 cm$^{2}$/V$\cdot$s, and 2.0 V, respectively. Furthermore, a low-voltage-operated resistor-loaded inverter has been fabricated based on such an a-IGZO TFT, showing ideal full swing characteristics and high gain of $\sim $27 at 3.0 V. These results indicate a-IGZO TFTs gated by optimized Al$_{2}$O$_{3}$/HfO$_{2}$ stacked dielectrics are of great interests for low-power, high performance, and large-area display and emerging electronics.
|
|
Received: 04 September 2022
Published: 19 October 2022
|
|
PACS: |
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
77.55.D
|
(High-permittivity gate dielectric films)
|
|
81.05.Gc
|
(Amorphous semiconductors)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
|
|
|
[1] | Kamiya T, Nomura K, Hosono H et al. 2009 J. Disp. Technol. 5 273 |
[2] | Fan C L, Shang M C, Li B J et al. 2014 Materials 7 5761 |
[3] | Li Y R, Yin K, Diao Y et al. 2022 Nanoscale 14 2316 |
[4] | Hsu C M, Tzou W C, Yang C F et al. 2015 Materials 8 2769 |
[5] | Fan C L, Shang M C, Li B J, Lin Y Z, Wang S J, Lee W D, Hung B R et al. 2015 Materials 8 1704 |
[6] | Hu W N, Jiang J, Xie D D et al. 2018 Nanoscale 10 14893 |
[7] | Su H, Ma Y X, Lai P T et al. 2019 IEEE Electron Device Lett. 40 1953 |
[8] | Kim T, Nam Y, Hur J et al. 2016 IEEE Electron Device Lett. 37 1131 |
[9] | Zhu L, He G, Long Y et al. 2018 IEEE Trans. Electron Devices 65 2870 |
[10] | Kim J B, Fuentes-Hernandez C et al. 2009 Appl. Phys. Lett. 94 142107 |
[11] | Chang S, Song Y W, Lee S et al. 2008 Appl. Phys. Lett. 92 192104 |
[12] | Alshammari F, Nayak P et al. 2016 ACS Appl. Mater. & Interfaces 8 22751 |
[13] | Mikhelashvili V and Eisenstein G 2007 Thin Solid Films 515 3704 |
[14] | Wang X N, Zhang X Q, Du J et al. 2011 Mater. Sci. Forum 687 209 |
[15] | Cho M H, Roh Y S, Whang C N et al. 2002 Appl. Phys. Lett. 81 1071 |
[16] | Hsieh H H and Wu C C 2006 Appl. Phys. Lett. 89 041109 |
[17] | Chen R S, Zhou W, Zhang M et al. 2012 Thin Solid Films 520 6681 |
[18] | Chen Y Y, Liu Y, Wu Z H, Wang L, Li B, En Y F, and Chen Y Q 2018 Chin. Phys. Lett. 35 048502 |
[19] | Lee S Y, Chang S, Lee J S et al. 2010 Thin Solid Films 518 3030 |
[20] | Verlaak S, Arkhipov V, Heremans P et al. 2003 Appl. Phys. Lett. 82 745 |
[21] | Lee K Y, Lee W C, Lee Y J et al. 2006 Appl. Phys. Lett. 89 222906 |
[22] | Kukli K, Ritala M, Lu J, Hårsta A, and Leskelä M 2004 J. Electrochem. Soc. 151 F189 |
[23] | Shan F, Liu A, Liu G et al. 2015 J. Disp. Technol. 11 541 |
[24] | Lee J M, Cho I T, Lee J H et al. 2009 Appl. Phys. Lett. 94 222112 |
[25] | Huang X M, Wu C F, Lu H et al. 2015 Chin. Phys. Lett. 32 077303 |
[26] | Rawat A, Gupta A K, Rawat B et al. 2021 IEEE Trans. Electron Devices 68 3622 |
[27] | Li Y S, He J C, Hsu S M et al. 2016 IEEE Electron Device Lett. 37 46 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|