Chin. Phys. Lett.  2022, Vol. 39 Issue (11): 117601    DOI: 10.1088/0256-307X/39/11/117601
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Optically Detected Magnetic Resonance of Diamond Nitrogen-Vacancy Centers under Megabar Pressures
Jian-Hong Dai1†, Yan-Xing Shang1,2†, Yong-Hong Yu1,2, Yue Xu1,2, Hui Yu1,2, Fang Hong1,3, Xiao-Hui Yu1,3*, Xin-Yu Pan1,3,4*, and Gang-Qin Liu1,3,4*
1Beijing National Research Center for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
4CAS Center of Excellence in Topological Quantum Computation, Beijing 100190, China
Cite this article:   
Jian-Hong Dai, Yan-Xing Shang, Yong-Hong Yu et al  2022 Chin. Phys. Lett. 39 117601
Download: PDF(9646KB)   PDF(mobile)(12133KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Megabar pressures are of crucial importance for cutting-edge studies of condensed matter physics and geophysics. With the development of diamond anvil cell (DAC), laboratory studies of high pressure have entered the megabar era for decades. However, it is still challenging to implement in situ magnetic sensing under ultrahigh pressures. In this work, we demonstrate optically detected magnetic resonance and coherent quantum control of diamond nitrogen-vacancy (NV) center, a promising quantum sensor inside the DAC, up to 1.4 Mbar. The pressure dependence of optical and spin properties of NV centers in diamond are quantified, and the evolution of an external magnetic field has been successfully tracked at about 80 GPa. These results shed new light on our understanding of diamond NV centers and pave the way for quantum sensing under extreme conditions.
Received: 17 September 2022      Express Letter Published: 16 October 2022
PACS:  76.30.Mi (Color centers and other defects)  
  33.35.+r (Electron resonance and relaxation)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  76.70.Hb (Optically detected magnetic resonance (ODMR))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/11/117601       OR      https://cpl.iphy.ac.cn/Y2022/V39/I11/117601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian-Hong Dai
Yan-Xing Shang
Yong-Hong Yu
Yue Xu
Hui Yu
Fang Hong
Xiao-Hui Yu
Xin-Yu Pan
and Gang-Qin Liu
[1] Mao H K, Chen X J, Ding Y, Li B, and Wang L 2018 Rev. Mod. Phys. 90 015007
[2] Bassett W A 1979 Annu. Rev. Earth Planet. Sci. 7 357
[3] Drozdov A, Kong P, Minkov V et al. 2019 Nature 569 528
[4] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, and Hemley R J 2019 Phys. Rev. Lett. 122 027001
[5] Hong F, Yang L, Shan P, Yang P, Liu Z, Sun J, Yin Y, Yu X, Cheng J, and Zhao Z 2020 Chin. Phys. Lett. 37 107401
[6]Meier T 2018 Annual Reports on NMR Spectroscopy (Amerstadam: Elsevier) vol 93 chap 1 pp 1–74
[7] Hamlin J J 2019 Nature 569 491
[8] Wang D, Ding Y, and Mao H K 2021 Materials 14 7563
[9] Balasubramanian G, Chan I, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A et al. 2008 Nature 455 648
[10] Maze J, Stanwix P, Hodges J et al. 2008 Nature 455 644
[11] Taylor J, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P, Yacoby A, Walsworth R, and Lukin M 2008 Nat. Phys. 4 810
[12] Doherty M W, Struzhkin V V, Simpson D A, McGuinness L P, Meng Y, Stacey A, Karle T J, Hemley R J, Manson N B, Hollenberg L C L, and Prawer S 2014 Phys. Rev. Lett. 112 047601
[13] Acosta V M, Bauch E, Ledbetter M P, Waxman A, Bouchard L S, and Budker D 2010 Phys. Rev. Lett. 104 070801
[14] Dolde F, Fedder H, Doherty M W, Nobauer T, Rempp F, Balasubramanian G, Wolf T, Reinhard F, Hollenberg L, Jelezko F et al. 2011 Nat. Phys. 7 459
[15] Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J, and Borczyskowski C V 1997 Science 276 2012
[16] Shang Y X, Hong F, Dai J H, Lu Y N, Liu E K, Yu X H, Liu G Q, and Pan X Y 2019 Chin. Phys. Lett. 36 086201
[17] Hsieh S, Bhattacharyya P, Zu C, Mittiga T, Smart T J, Machado F, Kobrin B, Höhn T O, Rui N Z, Kamrani M, Chatterjee S, Choi S, Zaletel M, Struzhkin V V, Moore J E, Levitas V I, Jeanloz R, and Yao N Y 2019 Science 366 1349
[18] Lesik M, Plisson T, Toraille L, Renaud J, Occelli F, Schmidt M, Salord O, Delobbe A, Debuisschert T, Rondin L, Loubeyre P, and Roch J F 2019 Science 366 1359
[19] Yip K Y, Ho K O, Yu K Y, Chen Y, Zhang W, Kasahara S, Mizukami Y, Shibauchi T, Matsuda Y, Goh S K, and Yang S 2019 Science 366 1355
[20] Steele L G, Lawson M, Onyszczak M, Bush B T, Mei Z, Dioguardi A P, King J, Parker A, Pines A, Weir S T, Evans W, Visbeck K, Vohra Y K, and Curro N J 2017 Appl. Phys. Lett. 111 221903
[21] Wang Z, McPherson C, Kadado R, Brandt N, Edwards S, Casey W H, and Curro N J 2021 Phys. Rev. Appl. 16 054014
[22] Shang Y X, Hong F, Dai J H, Lu Y N, Yu H, Yu Y H, Yu X H, Pan X Y, and Liu G Q 2022 arXiv:2203.10511v1
[23] Hamlin J J and Zhou B B 2019 Science 366 1312
[24] Lyapin S G, Ilichev I D, Novikov A P, Davydov V A, and Agafonov V N 2018 Nanosyst.: Phys. Chem. Math. 9 55
[25] Beha K, Batalov A, Manson N B, Bratschitsch R, and Leitenstorfer A 2012 Phys. Rev. Lett. 109 097404
[26] Awschalom D D, Hanson R, Jörg W and Zhou B B 2018 Nat. Photon. 12 516
[27]Wang J F, Liu L, and Liu X D 2022 Research Square (under review by Nature)
[28] Liu G Q, Feng X, Wang N, Li Q, and Liu R B 2019 Nat. Commun. 10 1344
[29] Aslam N, Pfender M, Neumann P, Reuter R, Zappe A, de Oliveira F F, Denisenko A, Sumiya H, Onoda S, Isoya J, and Wrachtrup J 2017 Science 357 67
[30] Konôpková Z, McWilliams R S, Gomez-Perez N, and Goncharov A F 2016 Nature 534 99
Related articles from Frontiers Journals
[1] Wen-Hao He, Ming-Ming Dong, Zhen-Zhong Hu, Qi-Han Zhang, Bo Yang, Ying Liu, Xiao-Long Fan, Guan-Xiang Du. High Resolution Microwave B-Field Imaging Using a Micrometer-Sized Diamond Sensor[J]. Chin. Phys. Lett., 2019, 36(12): 117601
[2] Jian Xing, Yan-Chun Chang, Ning Wang, Gang-Qin Liu, Xin-Yu Pan. Electron Spin Decoherence of Nitrogen-Vacancy Center Coupled to Multiple Spin Baths[J]. Chin. Phys. Lett., 2016, 33(10): 117601
[3] Pei Pei, He-Fei Huang, Yan-Qing Guo, He-Shan Song. Scalable Quantum Information Transfer between Individual Nitrogen-Vacancy Centers by a Hybrid Quantum Interface[J]. Chin. Phys. Lett., 2016, 33(02): 117601
[4] ZHOU Lei-Ming, DONG Yang, SUN Fang-Wen. Magnetic Field Measurement with Heisenberg Limit Based on Solid Spin NOON State[J]. Chin. Phys. Lett., 2015, 32(06): 117601
[5] Ismael Chiamenti, Francesca Bonfigli, Anderson S. L. Gomes, Rosa Maria Montereali, Larissa N. da Costa, Hypolito J. Kalinowski. Broadband Optical Active Waveguides Written by Femtosecond Laser Pulses in Lithium Fluoride[J]. Chin. Phys. Lett., 2014, 31(1): 117601
[6] ZHAO Yu-Jing, FANG Xi-Ming, ZHOU Fang, SONG Ke-Hui. Preparation of N-Qubit GHZ State with a Hybrid Quantum System Based on Nitrogen-Vacancy Centers[J]. Chin. Phys. Lett., 2013, 30(5): 117601
[7] TAO Kun, ZHANG Qi-Ren, LIU Ting-Yu, ZHANG Fei-Wu. Origin of the 420nm Absorption Band and Effect of Doping Fluorine in PbWO4 Crystals[J]. Chin. Phys. Lett., 2005, 22(1): 117601
[8] ZHANG Qi-Ren, LIU Ting-Yu, YAN Fei-Nan. V-F and V+K Aggregate Colour Centres: Origin of the Room-Temperature 350 nm Absorption Band in PbWO4[J]. Chin. Phys. Lett., 2004, 21(6): 117601
[9] ZHAO Quan-Zhong, QIU Jian-Rong, YANG Lü-Yun, JIANG Xiong-Wei, ZHAO Chong-Jun, ZHU Cong-Shan. Fabrication of Microstructures in LiF Crystals by a Femtosecond Laser[J]. Chin. Phys. Lett., 2003, 20(10): 117601
[10] ZHOU Qin-Ling, LIU Li-Ying, XU Lei, WANG Wen-Cheng, ZHU Cong-Shan, GAN Fu-Xi,. Near-Infrared Femtosecond Laser Induced Defect Formation in High Purity Silica Below the Optical Breakdown Threshold[J]. Chin. Phys. Lett., 2003, 20(10): 117601
[11] JIN Tongzheng, WANG Dazhi, HAN Shiying, SUI Yunxia, ZHAO Xiaoning, JIN Sizhao*. Investigation of Nanocrystalline SnO2 by Electron Spin Resonance[J]. Chin. Phys. Lett., 1992, 9(10): 117601
Viewed
Full text


Abstract