CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Optically Detected Magnetic Resonance of Diamond Nitrogen-Vacancy Centers under Megabar Pressures |
Jian-Hong Dai1†, Yan-Xing Shang1,2†, Yong-Hong Yu1,2, Yue Xu1,2, Hui Yu1,2, Fang Hong1,3, Xiao-Hui Yu1,3*, Xin-Yu Pan1,3,4*, and Gang-Qin Liu1,3,4* |
1Beijing National Research Center for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China 4CAS Center of Excellence in Topological Quantum Computation, Beijing 100190, China
|
|
Cite this article: |
Jian-Hong Dai, Yan-Xing Shang, Yong-Hong Yu et al 2022 Chin. Phys. Lett. 39 117601 |
|
|
Abstract Megabar pressures are of crucial importance for cutting-edge studies of condensed matter physics and geophysics. With the development of diamond anvil cell (DAC), laboratory studies of high pressure have entered the megabar era for decades. However, it is still challenging to implement in situ magnetic sensing under ultrahigh pressures. In this work, we demonstrate optically detected magnetic resonance and coherent quantum control of diamond nitrogen-vacancy (NV) center, a promising quantum sensor inside the DAC, up to 1.4 Mbar. The pressure dependence of optical and spin properties of NV centers in diamond are quantified, and the evolution of an external magnetic field has been successfully tracked at about 80 GPa. These results shed new light on our understanding of diamond NV centers and pave the way for quantum sensing under extreme conditions.
|
|
Received: 17 September 2022
Express Letter
Published: 16 October 2022
|
|
PACS: |
76.30.Mi
|
(Color centers and other defects)
|
|
33.35.+r
|
(Electron resonance and relaxation)
|
|
07.35.+k
|
(High-pressure apparatus; shock tubes; diamond anvil cells)
|
|
76.70.Hb
|
(Optically detected magnetic resonance (ODMR))
|
|
|
|
|
[1] | Mao H K, Chen X J, Ding Y, Li B, and Wang L 2018 Rev. Mod. Phys. 90 015007 |
[2] | Bassett W A 1979 Annu. Rev. Earth Planet. Sci. 7 357 |
[3] | Drozdov A, Kong P, Minkov V et al. 2019 Nature 569 528 |
[4] | Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, and Hemley R J 2019 Phys. Rev. Lett. 122 027001 |
[5] | Hong F, Yang L, Shan P, Yang P, Liu Z, Sun J, Yin Y, Yu X, Cheng J, and Zhao Z 2020 Chin. Phys. Lett. 37 107401 |
[6] | Meier T 2018 Annual Reports on NMR Spectroscopy (Amerstadam: Elsevier) vol 93 chap 1 pp 1–74 |
[7] | Hamlin J J 2019 Nature 569 491 |
[8] | Wang D, Ding Y, and Mao H K 2021 Materials 14 7563 |
[9] | Balasubramanian G, Chan I, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A et al. 2008 Nature 455 648 |
[10] | Maze J, Stanwix P, Hodges J et al. 2008 Nature 455 644 |
[11] | Taylor J, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P, Yacoby A, Walsworth R, and Lukin M 2008 Nat. Phys. 4 810 |
[12] | Doherty M W, Struzhkin V V, Simpson D A, McGuinness L P, Meng Y, Stacey A, Karle T J, Hemley R J, Manson N B, Hollenberg L C L, and Prawer S 2014 Phys. Rev. Lett. 112 047601 |
[13] | Acosta V M, Bauch E, Ledbetter M P, Waxman A, Bouchard L S, and Budker D 2010 Phys. Rev. Lett. 104 070801 |
[14] | Dolde F, Fedder H, Doherty M W, Nobauer T, Rempp F, Balasubramanian G, Wolf T, Reinhard F, Hollenberg L, Jelezko F et al. 2011 Nat. Phys. 7 459 |
[15] | Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J, and Borczyskowski C V 1997 Science 276 2012 |
[16] | Shang Y X, Hong F, Dai J H, Lu Y N, Liu E K, Yu X H, Liu G Q, and Pan X Y 2019 Chin. Phys. Lett. 36 086201 |
[17] | Hsieh S, Bhattacharyya P, Zu C, Mittiga T, Smart T J, Machado F, Kobrin B, Höhn T O, Rui N Z, Kamrani M, Chatterjee S, Choi S, Zaletel M, Struzhkin V V, Moore J E, Levitas V I, Jeanloz R, and Yao N Y 2019 Science 366 1349 |
[18] | Lesik M, Plisson T, Toraille L, Renaud J, Occelli F, Schmidt M, Salord O, Delobbe A, Debuisschert T, Rondin L, Loubeyre P, and Roch J F 2019 Science 366 1359 |
[19] | Yip K Y, Ho K O, Yu K Y, Chen Y, Zhang W, Kasahara S, Mizukami Y, Shibauchi T, Matsuda Y, Goh S K, and Yang S 2019 Science 366 1355 |
[20] | Steele L G, Lawson M, Onyszczak M, Bush B T, Mei Z, Dioguardi A P, King J, Parker A, Pines A, Weir S T, Evans W, Visbeck K, Vohra Y K, and Curro N J 2017 Appl. Phys. Lett. 111 221903 |
[21] | Wang Z, McPherson C, Kadado R, Brandt N, Edwards S, Casey W H, and Curro N J 2021 Phys. Rev. Appl. 16 054014 |
[22] | Shang Y X, Hong F, Dai J H, Lu Y N, Yu H, Yu Y H, Yu X H, Pan X Y, and Liu G Q 2022 arXiv:2203.10511v1 |
[23] | Hamlin J J and Zhou B B 2019 Science 366 1312 |
[24] | Lyapin S G, Ilichev I D, Novikov A P, Davydov V A, and Agafonov V N 2018 Nanosyst.: Phys. Chem. Math. 9 55 |
[25] | Beha K, Batalov A, Manson N B, Bratschitsch R, and Leitenstorfer A 2012 Phys. Rev. Lett. 109 097404 |
[26] | Awschalom D D, Hanson R, Jörg W and Zhou B B 2018 Nat. Photon. 12 516 |
[27] | Wang J F, Liu L, and Liu X D 2022 Research Square (under review by Nature) |
[28] | Liu G Q, Feng X, Wang N, Li Q, and Liu R B 2019 Nat. Commun. 10 1344 |
[29] | Aslam N, Pfender M, Neumann P, Reuter R, Zappe A, de Oliveira F F, Denisenko A, Sumiya H, Onoda S, Isoya J, and Wrachtrup J 2017 Science 357 67 |
[30] | Konôpková Z, McWilliams R S, Gomez-Perez N, and Goncharov A F 2016 Nature 534 99 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|