Chin. Phys. Lett.  2022, Vol. 39 Issue (11): 119801    DOI: 10.1088/0256-307X/39/11/119801
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Strongly Lensed Transient Sources: A Review
Kai Liao1*, Marek Biesiada2*, and Zong-Hong Zhu1,3*
1School of Physics and Technology, Wuhan University, Wuhan 430072, China
2National Centre for Nuclear Research, Pasteura 7, 02-093 Warsaw, Poland
3Department of Astronomy, Beijing Normal University, Beijing 100875, China
Cite this article:   
Kai Liao, Marek Biesiada, and Zong-Hong Zhu 2022 Chin. Phys. Lett. 39 119801
Download: PDF(17430KB)   PDF(mobile)(17449KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The past decades have witnessed a lot of progress in gravitational lensing with two main targets: stars and galaxies (with active galactic nuclei). The success is partially attributed to the continuous luminescence of these sources making the detection and monitoring relatively easy. With the running of ongoing and upcoming large facilities/surveys in various electromagnetic and gravitational-wave bands, the era of time-domain surveys would guarantee constant detection of strongly lensed explosive transient events, for example, supernovae in all types, gamma ray bursts with afterglows in all bands, fast radio bursts, and even gravitational waves. Lensed transients have many advantages over the traditional targets in studying the Universe, and magnification effect helps to understand the transients themselves at high redshifts. In this review article, on base of the recent achievements in literature, we summarize the methods of searching for different kinds of lensed transient signals, the latest results on detection and their applications in fundamental physics, astrophysics, and cosmology. At the same time, we give supplementary comments as well as prospects of this emerging research direction that may help readers who are interested in entering this field.
Received: 21 August 2022      Review Published: 05 November 2022
PACS:  98.80.Es (Observational cosmology (including Hubble constant, distance scale, cosmological constant, early Universe, etc))  
  98.62.Sb (Gravitational lenses and luminous arcs)  
  95.35.+d.  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/11/119801       OR      https://cpl.iphy.ac.cn/Y2022/V39/I11/119801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kai Liao
Marek Biesiada
and Zong-Hong Zhu
[1] Treu T 2010 Annu. Rev. Astron. Astrophys. 48 87
[2] Lemon C, Anguita T, Auger M, Courbin F, Galan A, McMahon R, Neira F, Oguri M, Schechter P, Shajib A, and Treu T 2022 arXiv:2206.07714 [astro-ph.GA]
[3] Oguri M and Marshall P J 2010 Mon. Not. R. Astron. Soc. 405 2579
[4] Treu T and Marshall P J 2016 Astron. Astrophys. Rev. 24 11
[5] Refsdal S 1964 Mon. Not. R. Astron. Soc. 128 307
[6] Tisserand P, Guillou L L, Afonso C et al. 2007 Astron. & Astrophys. 469 387
[7] Niikura H, Takada M, Yasuda N et al. 2019 Nat. Astron. 3 524
[8] Mao S and Paczynski B 1991 Astrophys. J. Lett. 374 L37
[9] Kelly P L, Rodney S A, Treu T et al. 2015 Science 347 1123
[10] Brown A G A, Vallenari A, Prusti T, de Bruijne J H J, Mignard F, Drimmel R, Babusiaux C, Bailer-Jones C A L, Bastian U, and Biermann M (Gaia Collaboration) 2016 Astron. & Astrophys. 595 A2
[11] Diehl H T, Buckley-Geer E J, Lindgren K A, and DES Collaboration 2017 Astrophys. J. Suppl. Ser. 232 15
[12] Sonnenfeld A, Verma A, More A et al. 2020 Astron. & Astrophys. 642 A148
[13] CHIME/FRB Collaboration 2021 Astrophys. J. Suppl. Ser. 257 59
[14] Niu C H, Aggarwal K, Li D et al. 2021 arXiv:2110.07418 [astro-ph.HE]
[15] The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration 2021 arXiv:2111.03606 [gr-qc]
[16] Dewdney P E, Hall P J, Schilizzi R T, and Lazio T J L W 2009 Proc. IEEE 97 1482
[17] Regimbau T, Dent T, Pozzo W D et al. 2012 Phys. Rev. D 86 122001
[18] Oguri M 2019 Rep. Prog. Phys. 82 126901
[19]Schneider P, Ehlers J, and Falco E E 1992 Gravitational Lenses (Berlin: Springer)
[20] Matsunaga N and Yamamoto K 2006 J. Cosmol. Astropart. Phys. 2006(01) 023
[21] Jung S and Shin C S 2019 Phys. Rev. Lett. 122 041103
[22] Weiler K W and Sramek R A 1988 Annu. Rev. Astron. Astrophys. 26 295
[23] Filippenko A V 1997 Annu. Rev. Astron. Astrophys. 35 309
[24] Branch D and Tammann G A 1992 Annu. Rev. Astron. Astrophys. 30 359
[25] Riess A G, Filippenko A V, Challis P et al. 1998 Astron. J. 116 1009
[26] Perlmutter S, Aldering G, Goldhaber G et al. 1999 Astrophys. J. 517 565
[27] Pakmor R, Hachinger S, Röpke F K, and Hillebrandt W 2011 Astron. & Astrophys. 528 A117
[28] Maoz D, Mannucci F, and Nelemans G 2014 Annu. Rev. Astron. Astrophys. 52 107
[29] Scolnic D M, Jones D O, Rest A et al. 2018 Astrophys. J. 859 101
[30] Porciani C and Madau P 2000 Astrophys. J. 532 679
[31] Holz D E 2001 Astrophys. J. Lett. 556 L71
[32] Wang Y 2000 Astrophys. J. 531 676
[33] Goobar A, Mörtsell E, Amanullah R, and Nugent P 2002 Astron. & Astrophys. 393 25
[34] Goobar A, Mörtsell E, Amanullah R et al. 2002 Astron. & Astrophys. 392 757
[35] Quimby R M, Oguri M, More A et al. 2014 Science 344 396
[36] Goldstein D A and Nugent P E 2017 Astrophys. J. Lett. 834 L5
[37] Lee C H 2018 Res. Notes Am. Astron. Soc. 2 186
[38] Bag S, Kim A G, Linder E V, and Shafieloo A 2021 Astrophys. J. 910 65
[39] Denissenya M, Bag S, Kim A G, Linder E V, and Shafieloo A 2022 Mon. Not. R. Astron. Soc. 511 1210
[40] Wojtak R, Hjorth J, and Gall C 2019 Mon. Not. R. Astron. Soc. 487 3342
[41] Holwerda B W, Knabel S, Steele R C et al. 2021 Mon. Not. R. Astron. Soc. 505 1316
[42] Sullivan M, Ellis R, Nugent P, Smail I, and Madau P 2000 Mon. Not. R. Astron. Soc. 319 549
[43]Saini T D, Raychaudhury S, and Shchekinov Y A 2000 Astron. & Astrophys. 363 349
[44] Stanishev V, Goobar A, Paech K et al. 2009 Astron. & Astrophys. 507 61
[45] Petrushevska T, Goobar A, Lagattuta D J et al. 2018 Astron. & Astrophys. 614 A103
[46] Shu Y, Bolton A S, Mao S et al. 2018 Astrophys. J. 864 91
[47] Nordin J, Rubin D, Richard J et al. and Supernova Cosmology Project 2014 Mon. Not. R. Astron. Soc. 440 2742
[48] Patel B, McCully C, Jha S W et al. 2014 Astrophys. J. 786 9
[49] Rodney S A, Patel B, Scolnic D et al. 2015 Astrophys. J. 811 70
[50] Goobar A, Paech K, Stanishev V et al. 2009 Astron. & Astrophys. 507 71
[51] Amanullah R, Goobar A, Clément B et al. 2011 Astrophys. J. Lett. 742 L7
[52] Rubin D, Hayden B, Huang X et al. 2018 Astrophys. J. 866 65
[53] Ryczanowski D, Smith G P, Bianconi M et al. 2020 Mon. Not. R. Astron. Soc. 495 1666
[54] Chornock R, Berger E, Rest A et al. 2013 Astrophys. J. 767 162
[55] Quimby R M, Werner M C, Oguri M et al. 2013 Astrophys. J. Lett. 768 L20
[56] Treu T, Schmidt K B, Brammer G B et al. 2015 Astrophys. J. 812 114
[57] Lotz J M, Koekemoer A, Coe D et al. 2017 Astrophys. J. 837 97
[58] Kelly P L, Brammer G, Selsing J et al. 2016 Astrophys. J. 831 205
[59] Rodney S A, Strolger L G, Kelly P L et al. 2016 Astrophys. J. 820 50
[60] Oguri M 2015 Mon. Not. R. Astron. Soc. 449 L86
[61] Sharon K and Johnson T L 2015 Astrophys. J. Lett. 800 L26
[62] Treu T, Brammer G, Diego J M et al. 2016 Astrophys. J. 817 60
[63] Diego J M, Broadhurst T, Chen C et al. 2016 Mon. Not. R. Astron. Soc. 456 356
[64] Jauzac M, Richard J, Limousin M et al. 2016 Mon. Not. R. Astron. Soc. 457 2029
[65] Grillo C, Karman W, Suyu S H et al. 2016 Astrophys. J. 822 78
[66] Kelly P L, Rodney S A, Treu T et al. 2016 Astrophys. J. Lett. 819 L8
[67] Kawamata R, Oguri M, Ishigaki M, Shimasaku K, and Ouchi M 2016 Astrophys. J. 819 114
[68] Vega-Ferrero J, Diego J M, Miranda V, and Bernstein G M 2018 Astrophys. J. Lett. 853 L31
[69] Grillo C, Rosati P, Suyu S H et al. 2018 Astrophys. J. 860 94
[70] Williams L L R and Liesenborgs J 2019 Mon. Not. R. Astron. Soc. 482 5666
[71] Grillo C, Rosati P, Suyu S H et al. 2020 Astrophys. J. 898 87
[72] Goobar A, Amanullah R, Kulkarni S R et al. 2017 Science 356 291
[73]Kulkarni S R 2013 Astronomer's Telegram 4807 1
[74] Dhawan S, Johansson J, Goobar A et al. 2020 Mon. Not. R. Astron. Soc. 491 2639
[75] More A, Suyu S H, Oguri M, More S, and Lee C H 2017 Astrophys. J. Lett. 835 L25
[76] Mörtsell E, Johansson J, Dhawan S et al. 2020 Mon. Not. R. Astron. Soc. 496 3270
[77] Diego J M, Bernstein G, Chen W, Goobar A, Johansson J P, Kelly P L, Mörtsell E, and Nightingale J W 2022 Astron. & Astrophys. 662 A34
[78] Yahalomi D A, Schechter P L, and Wambsganss J 2017 arXiv:1711.07919 [astro-ph.CO]
[79] Foxley-Marrable M, Collett T E, Vernardos G, Goldstein D A, and Bacon D 2018 Mon. Not. R. Astron. Soc. 478 5081
[80] Rodney S A, Brammer G B, Pierel J D R et al. 2021 Nat. Astron. 5 1118
[81] Akhshik M, Whitaker K E, Leja J et al. 2021 Astrophys. J. Lett. 907 L8
[82] Fishman G J and Meegan C A 1995 Annu. Rev. Astron. Astrophys. 33 415
[83] Mészáros P 2002 Annu. Rev. Astron. Astrophys. 40 137
[84] van Paradijs J, Kouveliotou C, and Wijers R A M J 2000 Annu. Rev. Astron. Astrophys. 38 379
[85] Klebesadel R W, Strong I B, and Olson R A 1973 Astrophys. J. Lett. 182 L85
[86] Meegan C A, Fishman G J, Wilson R B et al. 1992 Nature 355 143
[87] Gehrels N, Chincarini G, Giommi P et al. 2004 Astrophys. J. 611 1005
[88] Atwood W B, Abdo A A, Ackermann M et al. 2009 Astrophys. J. 697 1071
[89] Meegan C, Lichti G, Bhat P N et al. 2009 Astrophys. J. 702 791
[90] Woosley S E and Bloom J S 2006 Annu. Rev. Astron. Astrophys. 44 507
[91] Berger E 2014 Annu. Rev. Astron. Astrophys. 52 43
[92] Cucchiara A, Levan A J, Fox D B et al. 2011 Astrophys. J. 736 7
[93] Paczynski B 1986 Astrophys. J. Lett. 308 L43
[94] Paczynski B 1987 Astrophys. J. Lett. 317 L51
[95] Mao S 1993 Astrophys. J. 402 382
[96] Wambsganss J 1993 Astrophys. J. 406 29
[97] Nowak M A and Grossman S A 1994 Astrophys. J. 435 557
[98] Grossman S A and Nowak M A 1994 Astrophys. J. 435 548
[99] Quashnock J M and Lamb D Q 1993 Mon. Not. R. Astron. Soc. 265 L59
[100] Tegmark M, Hartmann D H, Briggs M S, Hakkila J, and Meegan C A 1996 Astrophys. J. 466 757
[101]Gorosabel J, Castro-Tirado A J, Brandt S, and Lund N 1998 Astron. & Astrophys. 336 57
[102] Nemiroff R J, Wickramasinghe W A D T, Norris J P et al. 1994 Astrophys. J. 432 478
[103] Nemiroff R J, Marani G F, Norris J P, and Bonnell J T 2001 Phys. Rev. Lett. 86 580
[104] Veres P, Bagoly Z, Horvath I, Meszaros A, and Balazs L G 2009 arXiv:0912.3928 [astro-ph.CO]
[105] Hurley K, Tsvetkova A E, Svinkin D S et al. 2019 Astrophys. J. 871 121
[106] Ahlgren B and Larsson J 2020 Astrophys. J. 897 178
[107] Hirose Y, Umemura M, Yonehara A, and Sato J 2006 Astrophys. J. 650 252
[108] Ji L Y, Kovetz E D, and Kamionkowski M 2018 Phys. Rev. D 98 123523
[109] Loeb A and Perna R 1998 Astrophys. J. 495 597
[110] Koopmans L V E and Wambsganss J 2001 Mon. Not. R. Astron. Soc. 325 1317
[111] Mao S and Loeb A 2001 Astrophys. J. Lett. 547 L97
[112] Granot J and Loeb A 2001 Astrophys. J. Lett. 551 L63
[113] Gaudi B S and Loeb A 2001 Astrophys. J.
Related articles from Frontiers Journals
[1] Jing Yang, Xin-Yan Fan, Chao-Jun Feng, and Xiang-Hua Zhai. Latest Data Constraint of Some Parameterized Dark Energy Models[J]. Chin. Phys. Lett., 2023, 40(1): 119801
[2] Jie An, Bao-Rong Chang, Li-Xin Xu. Cosmic Constraints to the $w$CDM Model from Strong Gravitational Lensing[J]. Chin. Phys. Lett., 2016, 33(07): 119801
[3] YANG Lei, YANG Wei-Qiang, XU Li-Xin. Constraining Equation of State of Dark Matter: Including Weak Gravitational Lensing[J]. Chin. Phys. Lett., 2015, 32(5): 119801
[4] YADAV Anil Kumar. Cosmological Constant Dominated Transit Universe from the Early Deceleration Phase to the Current Acceleration Phase in Bianchi-V Spacetime[J]. Chin. Phys. Lett., 2012, 29(6): 119801
[5] YANG Rong-Jia, QI Jing-Zhao, YANG Bao-Zhu . Restrictions on Purely Kinetic K-Essence[J]. Chin. Phys. Lett., 2011, 28(10): 119801
[6] Mubasher Jamil*, D. Momeni** . Evolution of the Brans–Dicke Parameter in Generalized Chameleon Cosmology[J]. Chin. Phys. Lett., 2011, 28(9): 119801
[7] Hassan Amirhashchi, Anirudh Pradhan, **, Bijan Saha . An Interacting Two-Fluid Scenario for Dark Energy in an FRW Universe[J]. Chin. Phys. Lett., 2011, 28(3): 119801
[8] YANG Rong-Jia, GAO Xiang-Ting. Observational Constraints on Purely Kinetic k-Essence Dark Energy Models[J]. Chin. Phys. Lett., 2009, 26(8): 119801
[9] WANG Jun, WU Ya-Bo, WANG Di, YANG Wei-Qiang. Extended Analysis on New Generalized Chaplygin Gas[J]. Chin. Phys. Lett., 2009, 26(8): 119801
[10] FU Huan-Huan, WU Ya-Bo, CHENG Fang-Yuan. Dynamical Stability and Attractor of the Variable Generalized Chaplygin Gas Model[J]. Chin. Phys. Lett., 2009, 26(6): 119801
[11] LIANG Nan, GAO Chang-Jun, ZHANG Shuang-Nan,. A Two-Field Dilaton Model of Dark Energy[J]. Chin. Phys. Lett., 2009, 26(6): 119801
[12] WANG Cong, WU Ya-Bo, LIU Fei. Evolution of Holographic Dark Energy in Interacting Modified Chaplygin Gas Model[J]. Chin. Phys. Lett., 2009, 26(2): 119801
[13] Arbab I. Arbab. Phantom Energy with Variable G and Λ[J]. Chin. Phys. Lett., 2008, 25(12): 119801
[14] Arbab I. Arbab. Viscous Dark Energy Models with Variable G and Λ[J]. Chin. Phys. Lett., 2008, 25(10): 119801
[15] EL-NABULSI Ahmad Rami. Accelerated D-Dimensional Compactified Universe in Gauss--Bonnet--Dilatonic Scalar Gravity from D-Brane/M-Theory[J]. Chin. Phys. Lett., 2008, 25(8): 119801
Viewed
Full text


Abstract