Chin. Phys. Lett.  2022, Vol. 39 Issue (1): 018701    DOI: 10.1088/0256-307X/39/1/018701
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Temperature-Dependent Far-Infrared Absorption in Cyclotrimethylene Trinitramine Single Crystals Using Broadband Time-Domain Terahertz Spectroscopy
Yupeng Liu1, Jinchun Shi2, and Chongyang Chen1*
1Institute of Modern Physics, Fudan University, Shanghai 200433, China
2The Peac Institute of Multiscale Sciences, Chengdu 610031, China
Cite this article:   
Yupeng Liu, Jinchun Shi, and Chongyang Chen 2022 Chin. Phys. Lett. 39 018701
Download: PDF(2057KB)   PDF(mobile)(3380KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the absorption properties of cyclotrimethylene trinitramine (RDX) single crystals from $\sim$15 to 150 cm$^{-1}$ using the terahertz time-domain spectroscopy. We observe that all the absorption modes exhibit strong anisotropic behavior in terms of the crystal orientations. We demonstrate that the anharmonic phonon model can well describe the temperature-dependent behaviors of these absorption modes. These results indicate that the intermolecular interaction plays a major role in the collective motion of large number of RDX molecules. Our findings provide important information for understanding and controlling the dynamic properties in the explosive materials.
Received: 22 September 2021      Published: 29 December 2021
PACS:  87.50.U (Millimeter/terahertz fields effects)  
  78.40.-q (Absorption and reflection spectra: visible and ultraviolet)  
  63.20.-e (Phonons in crystal lattices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/1/018701       OR      https://cpl.iphy.ac.cn/Y2022/V39/I1/018701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yupeng Liu
Jinchun Shi
and Chongyang Chen
[1] Ferguson B and Zhang X C 2002 Nat. Mater. 1 1
[2] Beard M C, Turner G M, and Schmuttenmaer C A 2002 J. Phys. Chem. B 106 7146
[3] Tribe W R, Newnham D A, Taday P F, and Kemp M C 2004 Proc. SPIE 5354 168
[4] Federici J, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, and Zimdars D 2005 Semicond. Sci. Technol. 20 S266
[5] Barber J, Hooks D E, Funk D J, Averitt R D, Taylor A J, and Babikov D 2005 J. Phys. Chem. A 109 15
[6] Choi K, Hong T, Sim K I, Ha T, Park B C, Chung J H, Cho S G, and Kim J H 2014 J. Appl. Phys. 115 023105
[7] Zhang L L, Zhong H, Deng C, Zhang C L, and Zhao Y J 2008 Appl. Phys. Lett. 92 091117
[8] Huhn A K, Saenz E, de Maagt P, and Bolivar P H 2013 IEEE Trans. Thz. Sci. Technol. 3 5
[9] Burnett A D, Fan W H, Upadhya P C, Cunningham J E, Edwards H G M, Kendrick J, Munshi T, Hargreaves M, Linfield E H, and Davies A G 2007 Proc. SPIE 6549 654905
[10] Maestrojuan I, Palacios I, Etayo D, Iriarte J C, Teniente J, Ederra I, and Gonzalo R 2011 Proc. SPIE 8188 81880N
[11] Zhang Y Y, Chen S, Cai Y, Lu L, Fan D, Shi J C, Huang J Y, and Luo S N 2020 Engineering 6 992
[12] Melinger J S, Laman N, and Grischkowsky D 2008 Appl. Phys. Lett. 93 011102
[13] Huang L, Shabaev A, Lambrakos S G, and Massa L 2013 Vib. Spectrosc. 64 62
[14] Allis D G, Zeitler J A, Taday P F, and Korter T M 2008 Chem. Phys. Lett. 463 84
[15] Pereverzev A, Sewell T D, and Thompson D L 2013 J. Phys. Chem. 139 044108
[16] Chen G, Xia M Z, Lei W, Wang F Y, and Gong X D 2014 J. Phys. Chem. A 118 11471
[17] Ganesh D, Venkatesh M, and Chaudhary A K 2018 Appl. Opt. 57 8743
[18] Palka N 2012 Acta Phys. Pol. A 122 854
[19] Whitley V H, Hooks D E, Ramos K J, O'Hara J F, Azad A K, Taylor A J, Barber J, and Averitt R D 2009 Anal. Bioanal. Chem. 395 315
[20] Wilkinson J, Caulder S M, and Portieri A 2008 Proc. SPIE 6949 694904
[21] Katz G, Zybin S, Goddard W A, I I I, Zeiri Y, and Kosloff R 2014 J. Phys. Chem. Lett. 5 772
[22] Wang X J, Wu Y Q, Huang F L, Hu W J, and Liu Y C 2019 Propell.Explos. Pyrotech. 44 870
[23] Yang D W, Liang J H, Zhou C, Sun L, Zheng R, Luo S N, Wu Y Z, and Qi J 2016 Adv. Opt. Mater. 4 12
[24] Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, and Qi J 2018 Phys. Rev. Lett. 121 086801
[25] Qi J 2021 Sci. Sin. Phys. Mech. Astro 51 047404
[26] Ganesh D, Rao E N, Venkatesh M, Nagarjuna K, Vaitheeswaran G, Sahoo A K, and Chaudhary A K 2020 ACS Omega 5 2541
[27] Ruggiero M T 2020 J. Infrared Millimeter Terahertz Waves 41 491
[28] Jepsen P U and Fischer B M 2005 Opt. Lett. 30 29
[29] Choi C S and Prince E 1972 Acta Crystallogr. Sect. B 28 2857
[30] Balkanski M, Wallis R, and Haro E 1983 Phys. Rev. B 28 1928
[31] Menendez J and Cardona M 1984 Phys. Rev. B 29 2051
[32] Tang H and Herman I P 1991 Phys. Rev. B 43 2299
[33] Zhang F, Wang H W, Tominaga K, and Hayashi M 2016 WWIREs: Comput. Mol. Sci. 6 386
Related articles from Frontiers Journals
[1] Zi-Qian Huang, Rong-Yao Yang, Wei-Zhou Jiang, Qi-Lin Zhang. Heating of Nanosized Liquid Water in High-Intensity Terahertz Pulses[J]. Chin. Phys. Lett., 2016, 33(01): 018701
[2] CHEN Hua, MA Shi-Hua, YAN Wen-Xing, WU Xiu-Mei, WANG Xiao-Zhou. The Diagnosis of Human Liver Cancer by using THz Fiber-Scanning Near-Field Imaging[J]. Chin. Phys. Lett., 2013, 30(3): 018701
[3] M. A. Saeed, N. A. Fauzia, I. Hossain, A. T. Ramli, B. A. Tahir. Thermoluminescence Response of Germanium-Doped Optical Fibers to X-Ray Irradiation[J]. Chin. Phys. Lett., 2012, 29(7): 018701
Viewed
Full text


Abstract