ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Microwave Induced Ultralong-Range Charge Migration in a Rydberg Atom |
Huihui Wang1,2, Yuechun Jiao1,2, Jianming Zhao1,2*, Liantuan Xiao1,2, and Suotang Jia1,2 |
1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
|
|
Cite this article: |
Huihui Wang, Yuechun Jiao, Jianming Zhao et al 2022 Chin. Phys. Lett. 39 013401 |
|
|
Abstract A microwave induced superposition of the $40S_{1/2}$ and $40P_{1/2}$ states of a Cs atom has been investigated in detail. Ultralong-range charge migration which spans a region more than 200 nm has been discovered. As far as we know, this is the first time to discover charge migration in such a long range. This leads to a large dipole moment which oscillates periodically. The present discovery may stimulate new applications such as quantum simulation of many body physics dominated by periodic interactions. In addition, we find an interesting phenomenon that Cs atoms in the superposition of $40S_{1/2}$ and $40P_{1/2}$ have a much larger blockade radius than those of Cs ($40S_{1/2}$) or Cs ($40P_{1/2}$) atoms.
|
|
Received: 13 November 2021
Editors' Suggestion
Published: 29 December 2021
|
|
|
|
|
|
[1] | Marcus R A 1956 J. Chem. Phys. 24 966 |
[2] | May V and Kühn O 2011 Charge and Energy Transfer Dynamics in Molecular Systems (New York: WILEY-VCH Verlag) |
[3] | Weinkauf R, Schanen P, Metsala A, Schlag E W, Bürgle M, and Kessler H 1996 J. Phys. Chem. 100 18567 |
[4] | Cederbaum L S and Zobeley J 1999 Chem. Phys. Lett. 307 205 |
[5] | Kraus P M, Mignolet B, Baykusheva D, Rupenyan A, Horny L, Penka E F, Grassi G, Tolstikhin O I, Schneider J, Jensen F, Madsen L B, Bandrauk A D, Remacle F, and Wörner H J 2015 Science 350 790 |
[6] | Barth I and Manz J 2006 Angew. Chem. Int. Ed. 45 2962 |
[7] | Jia D, Manz J, Paulus B, Pohl V, Tremblay J C, and Yang Y 2017 Chem. Phys. 482 146 |
[8] | Li H, Mignolet B, Wachter G, Skruszewicz S, Zherebtsov S, Süßmann F, Kessel A, Trushin S A, Kling N G, Kübel M, Ahn B, Kim D, Ben-Itzhak I, Cocke C L, Fennel T, Tiggesbäumker J, Meiwes-Broer K H, Lemell C, Burgdörfer J, Levine R D, Remacle F, and Kling M F 2015 Phys. Rev. Lett. 114 123004 |
[9] | Wörner H J, Arrell C A, Banerji N, Cannizzo A, Chergui M, Das A K, Hamm P, Keller U, Kraus P M, Liberatore E, Lopez-Tarifa P, Lucchini M, Meuwly M, Milne C, Moser J E, Rothlisberger U, Smolentsev G, Teuscher J, van Bokhoven, and Wenger O 2017 Struct. Dyn. 4 061508 |
[10] | Bandrauk A D, Chelkowski S, Corkum P B, Manz J, and Yudin G L 2009 J. Phys. B 42 134001 |
[11] | Despré V, Golubev N V, and Kuleff A I 2018 Phys. Rev. Lett. 121 203002 |
[12] | Jia D, Manz J, and Yang Y 2019 J. Phys. Chem. Lett. 10 4273 |
[13] | Jia D, Manz J, and Yang Y 2019 J. Chem. Phys. 151 244306 |
[14] | Dudin Y O and Kuzmich A 2012 Science 336 887 |
[15] | Hermann-Avigliano C, Teixeira R C, Nguyen T L, Cantat-Moltrecht T, Nogues G, Dotsenko I, Gleyzes S, Raimond J M, Haroche S, and Brune M 2014 Phys. Rev. A 90 040502 |
[16] | Lampen J, H N H, Li L, Berman P R, and Kuzmich A 2018 Phys. Rev. A 98 033411 |
[17] | Gallagher T F 1994 Rydberg Atoms (New York: Cambridge University Press) |
[18] | Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G, and Saffman M 2009 Nat. Phys. 5 110 |
[19] | Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, and Vuletić V 2012 Nature 488 57 |
[20] | Tiarks D, Baur S, Schneider K, Dürr S, and Rempe G 2014 Phys. Rev. Lett. 113 053602 |
[21] | Moore K R, Anderson S E, and Raithel G 2015 Nat. Commun. 6 6090 |
[22] | Vogt T, Viteau M, Zhao J, Chotia A, Comparat D, and Pillet P 2006 Phys. Rev. Lett. 97 083003 |
[23] | Comparat D and Pillet P 2010 J. Opt. Soc. Am. B 27 A208 |
[24] | Paredes-Barato D and Adams C S 2014 Phys. Rev. Lett. 112 040501 |
[25] | Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, and Shaffer J P 2012 Nat. Phys. 8 819 |
[26] | Jing M, Hu Y, Ma J, Zhang H, Zhang L, Xiao L, and Jia S 2020 Nat. Phys. 16 911 |
[27] | Günter G, Schempp H, Robert-de S V M, Gavryusev V, Helmrich S, Hofmann C S, Whitlock S, and Weidemüller M 2013 Science 342 954 |
[28] | Orioli A P, Signoles A, Wildhagen H, Günter G, Berges J, Whitlock S, and Weidemüller M 2018 Phys. Rev. Lett. 120 063601 |
[29] | Mizoguchi M, Zhang Y, Kunimi M, Tanaka A, Takeda S, Takei N, Bharti V, Koyasu K, Kishimoto T, Jaksch D, A G A, Kiffner M, Masella G, Pupillo G, Weidemüller M, and Ohmori K 2020 Phys. Rev. Lett. 124 253201 |
[30] | Sheng J, Chao Y, and Shaffer J P 2016 Phys. Rev. Lett. 117 103201 |
[31] | Thaicharoen N, Gonçalves L F, and Raithel G 2016 Phys. Rev. Lett. 116 213002 |
[32] | Takei N, Sommer C, Genes C, Pupillo G, Goto H, Koyasu K, Chiba H, Weidemüller M, and Ohmori K 2016 Nat. Commun. 7 13449 |
[33] | Ding H, Jia D, Manz J, and Yang Y 2017 Mol. Phys. 115 1813 |
[34] | Manz J, Pérez-Torres J F, and Yang Y 2013 Phys. Rev. Lett. 111 153004 |
[35] | Manz J, Pérez-Torres J F, and Yang Y 2014 J. Phys. Chem. A 118 8411 |
[36] | Jia D, Manz J, and Yang Y 2018 J. Chem. Phys. 148 041101 |
[37] | Jia D, Manz J, and Yang Y 2017 J. Mod. Opt. 64 960 |
[38] | Liu C, Manz J, Ohmori K, Sommer C, Takei N, Tremblay J C, and Zhang Y 2018 Phys. Rev. Lett. 121 173201 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|