Chin. Phys. Lett.  2022, Vol. 39 Issue (1): 011201    DOI: 10.1088/0256-307X/39/1/011201
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Electromagnetic Form Factors of $\varLambda$ Hyperon in the Vector Meson Dominance Model and a Possible Explanation of the Near-Threshold Enhancement of the $e^+e^- \to \varLambda\bar{\varLambda}$ Reaction
Zhong-Yi Li1,2†, An-Xin Dai1,2†, and Ju-Jun Xie1,2,3,4*
1Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
2School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 101408, China
3School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
4Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
Cite this article:   
Zhong-Yi Li, An-Xin Dai, and Ju-Jun Xie 2022 Chin. Phys. Lett. 39 011201
Download: PDF(526KB)   PDF(mobile)(655KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The near-threshold $e^+e^- \to \varLambda\bar{\varLambda}$ reaction is studied with the assumption that the production mechanism is due to a near-$\varLambda \bar{\varLambda}$-threshold bound state. The cross section of the $e^+e^- \to \varLambda\bar{\varLambda}$ reaction is parameterized in terms of the electromagnetic form factors of $\varLambda$ hyperon, which are obtained with the vector meson dominance model. It is shown that the contribution to the $e^+e^- \to \varLambda\bar{\varLambda}$ reaction from a new narrow state with quantum numbers $J^{PC}=1^{--}$ is dominant for energies very close to threshold. The mass of this new state is around 2231 MeV, which is very close to the mass threshold of $\varLambda \bar{\varLambda}$, while its width is just a few MeV. This gives a possible solution to the problem that all previous calculations seriously underestimated the near-threshold total cross section of the $e^+e^- \to \varLambda\bar{\varLambda}$ reaction. We also note that the near-threshold enhancement can also be reproduced by including these well established vector resonances $\omega(1420)$, $\omega(1650)$, $\phi(1680)$, or $\phi(2170)$ with a Flatté form for their total decay width, and a strong coupling to the $\varLambda\bar{\varLambda}$ channel.
Received: 07 October 2021      Published: 29 December 2021
PACS:  12.40.Vv (Vector-meson dominance)  
  13.40.Gp (Electromagnetic form factors)  
  13.66.Bc (Hadron production in e?e+ interactions)  
  13.60.Rj (Baryon production)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/1/011201       OR      https://cpl.iphy.ac.cn/Y2022/V39/I1/011201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhong-Yi Li
An-Xin Dai
and Ju-Jun Xie
[1] Pacetti S, Baldini F R, and Tomasi-Gustafsson E 2015 Phys. Rep. 550–551 1
[2] Gayou O et al. [Jefferson Lab Hall A] 2002 Phys. Rev. Lett. 88 092301
[3] Aubert B et al. [BABAR] 2007 Phys. Rev. D 76 092006
[4] Ablikim M et al. [BESIII] 2018 Phys. Rev. D 97 032013
[5] Ablikim M et al. [BESIII] 2019 Phys. Rev. Lett. 123 122003
[6] Haidenbauer J, Hippchen T, Holinde K, Holzenkamp B, Mull V, and Speth J 1992 Phys. Rev. C 45 931
[7] Baldini R, Pacetti S, Zallo A, and Zichichi A 2009 Eur. Phys. J. A 39 315
[8] Fäldt G 2016 Eur. Phys. J. A 52 141
[9] Haidenbauer J and Meißner U G 2016 Phys. Lett. B 761 456
[10] Fäldt G and Kupsc A 2017 Phys. Lett. B 772 16
[11] Yang Y and Lu Z 2018 Mod. Phys. Lett. A 33 1850133
[12] Bystritskiy Y M 2021 Phys. Rev. D 103 116029
[13] Wang J Z, Wang L M, Liu X, and Matsuki T 2021 Phys. Rev. D 104 054045
[14] Xiao L Y, Weng X Z, Zhong X H, and Zhu S L 2019 Chin. Phys. C 43 113105
[15] Cao X, Dai J P, and Xie Y P 2018 Phys. Rev. D 98 094006
[16] Yang Y, Chen D Y, and Lu Z 2019 Phys. Rev. D 100 073007
[17] Haidenbauer J, Meißner U G, and Dai L Y 2021 Phys. Rev. D 103 014028
[18] Zyla P A et al. [Particle Data Group] 2020 Prog. Theor. Exp. Phys. 2020 083C01
[19] Zhao L, Li N, Zhu S L, and Zou B S 2013 Phys. Rev. D 87 054034
[20] Zhu J T, Liu Y, Chen D Y, Jiang L, and He J 2020 Chin. Phys. C 44 123103
[21] Iachello F, Jackson A D, and Lande A 1973 Phys. Lett. B 43 191
[22] Iachello F and Wan Q 2004 Phys. Rev. C 69 055204
[23] Bijker R and Iachello F 2004 Phys. Rev. C 69 068201
[24] Bijker R 2007 Eur. Phys. J. A 32 403
[25] Li Z Y and Xie J J 2021 Commun. Theor. Phys. 73 055201
[26] Wan J, Yang Y, and Lu Z 2021 Eur. Phys. J. Plus 136 949
[27] Ablikim M et al. [BESIII] 2019 Phys. Rev. D 99 032001
[28] Ablikim M et al. [BESIII] 2019 Phys. Rev. D 100 032009
[29] Ablikim M et al. [BESIII] 2020 Phys. Rev. D 102 012008
[30] Ablikim M et al. [BESIII] 2021 Phys. Rev. D 103 072007
[31] Ablikim M et al. [BESIII] 2020 Phys. Rev. Lett. 124 112001
[32] Ablikim M et al. [BESIII] 2021 Phys. Lett. B 813 136059
[33] Huang G S 2021 Prog. Sci. ICHEP2020 463 (40th International Conference on High Energy Physics)
[34] Ablikim M et al. [BESIII] 2021 Phys. Rev. D 104 032007
[35] Ablikim M et al. [BESIII] 2021 Phys. Rev. D 104 092014
[36] Page P R, Swanson E S, and Szczepaniak A P 1999 Phys. Rev. D 59 034016
[37] Barnes T, Black N, and Page P R 2003 Phys. Rev. D 68 054014
[38] Ding G J and Yan M L 2007 Phys. Lett. B 650 390
[39] Wang Z G 2007 Nucl. Phys. A 791 106
[40] Ding G J and Yan M L 2007 Phys. Lett. B 657 49
[41] Chen H X, Liu X, Hosaka A, and Zhu S L 2008 Phys. Rev. D 78 034012
[42] Martinez T A, Khemchandani K P, Geng L S, Napsuciale M, and Oset E 2008 Phys. Rev. D 78 074031
[43] Coito S, Rupp G, and van Beveren E 2009 Phys. Rev. D 80 094011
[44] Ali A and Wang W 2011 Phys. Rev. Lett. 106 192001
[45] Dong Y, Faessler A, Gutsche T, Lü Q, and Lyubovitskij V E 2017 Phys. Rev. D 96 074027
[46] Ke H W and Li X Q 2019 Phys. Rev. D 99 036014
[47] Agaev S S, Azizi K, and Sundu H 2020 Phys. Rev. D 101 074012
[48] Li Q, Gui L C, Liu M S, Lü Q F, and Zhong X H 2021 Chin. Phys. C 45 023116
[49] Malabarba B B, Ren X L, Khemchandani K P, and Martinez T A 2021 Phys. Rev. D 103 016018
[50] Zhao C G, Wang G Y, Li G N, Wang E, and Li D M 2019 Phys. Rev. D 99 114014
[51] Denig A and Salme G 2013 Prog. Part. Nucl. Phys. 68 113
[52] Bianconi A and Tomasi-Gustafsson E 2015 Phys. Rev. Lett. 114 232301
[53] Ablikim M et al. [BESIII] 2021 arXiv:2103.12486 [hep-ex]
[54] Flatte S M 1976 Phys. Lett. B 63 224
[55] Zou B S and Hussain F 2003 Phys. Rev. C 67 015204
[56] Xie J J, Liu B C, and An C S 2013 Phys. Rev. C 88 015203
[57] Carbonell J, Protasov K V, and Dalkarov O D 1993 Phys. Lett. B 306 407
[58] Barnes P D, Franklin G, McCrady R, Merrill F, Meyer C, Quinn B, Schumacher R A, Zeps V, Hamann N, Eyrich W et al. 2000 Phys. Rev. C 62 055203
[59] Guo F K, Haidenbauer J, Hanhart C, and Meissner U G 2010 Phys. Rev. D 82 094008
[60] Lee N, Luo Z G, Chen X L, and Zhu S L 2011 Phys. Rev. D 84 014031
[61] Cao Q F, Qi H R, Wang Y F, and Zheng H Q 2019 Phys. Rev. D 100 054040
[62] Dong X K, Guo F K, and Zou B S 2021 Prog. Phys. 41(2) 65
[63] Shi X D, Zhou X R, Qin X S, and Peng H P 2021 J. Instrum. 16 P03029
[64] Sang H, Shi X, Zhou X, Kang X, and Liu J 2021 Chin. Phys. C 45 053003
[65] Fan Y L, Shi X D, Zhou X R, and Sun L 2021 arXiv:2107.06118 [hep-ex]
Related articles from Frontiers Journals
[1] YOU Fu-Yi, WANG Zhi-Gang, WAN Shao-Long. Analysis of the Vertexes ΣQΞQ*K* and Ξ'QΣQ*K* within Light-Cone QCD Sum Rules[J]. Chin. Phys. Lett., 2012, 29(2): 011201
[2] HANG Sheng-Xi, ZHANG Zhen-Yu, LIU Jue-Ping. Finite-Width Correction to Form Factors of γγ→ π0 Transition[J]. Chin. Phys. Lett., 2006, 23(9): 011201
[3] CHEN Wen-Fang, LU Ding-Hui. In-Medium Nucleon Electromagnetic Form Factors in Vector Meson Dominance Model[J]. Chin. Phys. Lett., 2004, 21(8): 011201
[4] XU Qing-Hua, LIANG Zuo-Tang. Contribution of Vector Meson Dominance to the Single-Spin Azimuthal Asymmetry in Semi-inclusive Pion Electro-Production[J]. Chin. Phys. Lett., 2001, 18(8): 011201
[5] GAO Song, ZHANG Yi-jun SU Ru-keng. Effective Masses of Mesons and Nucleon in Hot Medium for the Walecka Model[J]. Chin. Phys. Lett., 1996, 13(2): 011201
Viewed
Full text


Abstract