Chin. Phys. Lett.  2022, Vol. 39 Issue (1): 010501    DOI: 10.1088/0256-307X/39/1/010501
GENERAL |
Influence of Parameters of Optical Fibers on Optical Soliton Interactions
Qin Zhou*
School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430200, China
Cite this article:   
Qin Zhou 2022 Chin. Phys. Lett. 39 010501
Download: PDF(1054KB)   PDF(mobile)(1168KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The interaction between optical solitons is of great significance for studying interaction between light and matter and development of all-optical devices, and is conducive to the design of integrated optical path. Optical soliton interactions for the nonlinear Schrödinger equation are investigated to improve the communication quality and system integration. Solutions of the equation are derived and used to analyze the interaction of two solitons. Some suggestions are put forward to weaken their interactions.
Received: 01 December 2021      Editors' Suggestion Published: 29 December 2021
PACS:  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/1/010501       OR      https://cpl.iphy.ac.cn/Y2022/V39/I1/010501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qin Zhou
[1] Choi M R, Kang Y, and Lee Y R 2021 J. Math. Phys. 62 071506
[2] Gordon J P and Haus H A 1986 Opt. Lett. 11 665
[3] Akhmediev N and Karlsson M 1995 Phys. Rev. A 51 2602
[4] Marin-Palomo P, Kemal J N, Karpov M, Kordts A, Pfeifle J, Pfeiffer M H P, Trocha P, Wolf S, Brasch V, Anderson M H, Rosenberger R, Vijayan K, Freude W, Kippenberg T J, and Koos C 2017 Nature 546 274
[5] Chen S L, Wang L X, Wen L, Dai C Q, Liu J K, and Zhang X F 2021 Optik 247 167932
[6] Mou D S, Fang J J, Dai C Q, and Wang Y Y 2021 Optik 227 165396
[7] Zhu X, Liao S W, Cai Z, Qiu Y L, and He Y J 2021 Chaos, Solitons & Fractals 146 110837
[8] Pan J X, Huang T Y, Wang Y T, Wu Z C, Zhang J, and Zhao L M 2021 Phys. Rev. A 104 043507
[9] Ahmad A, Bacha B A, Ullah A, Wahid U, and Haneef M 2021 Phys. Scr. 96 105104
[10] Yu W T, Zhang H X, Wazwaz A M, and Liu W J 2021 Results Phys. 28 104618
[11] Zitelli M, Mangini F, Ferraro M, Sidelnikov O, and Wabnitz S 2021 Commun. Phys. 4 182
[12] Mittal S, Moille G, Srinivasan K, Chembo Y K, and Hafezi M 2021 Nat. Phys. 17 1169
[13] Liu W, Shi T, Liu M, Wang Q, Liu X, Zhou Q, Lei M, Lu P, Yu L, and Wei Z 2021 Opt. Express 29 29402
[14] Liu M L, Wu H B, Liu X M, Wang Y R, Lei M, Liu W J, Guo W, and Wei Z Y 2021 Opto-Electron. Adv. 4 200029
[15] Wang Y, Hou S, Yu Y, Liu W, Yan P, and Yang J 2021 Opt. Express 29 20526
[16] Liu W, Liu M, Liu X, Lei M, and Wei Z 2020 Opt. Lett. 45 419
[17] Meng L, Liu J L, Zhang H F, and Yang W X 2021 Appl. Opt. 60 5854
[18] Serkin V N and Hasegawa A 2002 IEEE J. Sel. Top. Quantum Electron. 8 418
[19] Guo H, Karpov M, Lucas E, Kordts A, Pfeiffer M H P, Brasch V, Lihachev G, Lobanov V E, Gorodetsky M L, and Kippenberg T J 2017 Nat. Phys. 13 94
[20] Porsezian K and Nakkeeran K 1996 Phys. Rev. Lett. 76 3955
[21] Turitsyn S K, Bale B G, and Fedoruk M P 2012 Phys. Rep. 521 135
[22] Song Y F, Shi X J, Wu C F, Tang D Y, and Zhang H 2019 Appl. Phys. Rev. 6 021313
[23] Kumar S and Hasegawa A 1997 Opt. Lett. 22 372
[24] Yu T, Golovchenko E A, Pilipetskii A N, and Menyuk C R 1997 Opt. Lett. 22 793
[25] Wang B, Zhang Z, and Li B 2020 Chin. Phys. Lett. 37 030501
[26] Kang Z Z and Xia T C 2019 Chin. Phys. Lett. 36 110201
[27] Liu X, Zhang H, and Liu W 2022 Appl. Math. Modell. 102 305
[28] Yan Y Y and Liu W J 2021 Chin. Phys. Lett. 38 094201
[29] Wang L, Luan Z, Zhou Q, Biswas A, Alzahrani A K, and Liu W 2021 Nonlinear Dyn. 104 2613
[30] Wang L, Luan Z, Zhou Q, Biswas A, Alzahrani A K, and Liu W 2021 Nonlinear Dyn. 104 629
[31] Liu X, Zhou Q, Biswas A, Alzahrani A K, and Liu W 2020 J. Adv. Res. 24 167
[32] Wang L L and Liu W J 2020 Chin. Phys. B 29 070502
[33] Yan Y and Liu W 2019 Appl. Math. Lett. 98 171
[34] Yu W, Liu W, Triki H, Zhou Q, and Biswas A 2019 Nonlinear Dyn. 97 1253
[35] Song L J, Xu X Y, and Wang Y 2020 Chin. Phys. B 29 064211
[36] Hirota R 1973 J. Math. Phys. 14 805
[37] Liu X Y, Liu W J, Triki H, Zhou Q, and Biswas A 2019 Nonlinear Dyn. 96 801
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 010501
[2] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 010501
[3] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 010501
[4] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 010501
[5] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 010501
[6] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 010501
[7] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 010501
[8] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 010501
[9] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 010501
[10] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 010501
[11] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 010501
[12] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 010501
[13] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 010501
[14] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 010501
[15] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 010501
Viewed
Full text


Abstract