Chin. Phys. Lett.  2020, Vol. 37 Issue (8): 087502    DOI: 10.1088/0256-307X/37/8/087502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
A Nonlinear Theoretical Model of Magnetization and Magnetostriction for Ferromagnetic Materials under Applied Stress and Magnetic Fields
Pengpeng Shi1,2*
1School of Civil Engineering & Institute of Mechanics and Technology, Xi'an University of Architecture and Technology, Xi'an 710055, China
2State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Engineering Research Center of NDT and Structural Integrity Evaluation, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
Cite this article:   
Pengpeng Shi 2020 Chin. Phys. Lett. 37 087502
Download: PDF(723KB)   PDF(mobile)(711KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A thermodynamic and micro-statistical model is proposed to explain the magnetization and magnetostriction mechanisms for isotropic ferromagnetic materials. Here a nonlinear magnetostrictive expression enhances the characterization of the nonlinear magnetic-mechanical effect, and the Brillouin function makes it possible to describe the relationship between the equivalent field and magnetization for various types of materials. Through detailed comparisons with the recent models of Wu et al. [Appl. Phys. Lett. 115 (2019) 162406] and Daniel [Eur. Phys. J.: Appl. Phys. 83 (2018) 30904], it is confirmed that the proposed model can provide greater physical insight and a more accurate description of the complex magnetostriction and magnetization behaviors, especially the complex nonlinearity of stress effects.
Received: 18 April 2020      Published: 28 July 2020
PACS:  75.80.+q (Magnetomechanical effects, magnetostriction)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
  75.50.Bb (Fe and its alloys)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11802225) and the Natural Science Basic Research Plan in the Shaanxi Province of China (Grant No. 2019JQ-261).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/8/087502       OR      https://cpl.iphy.ac.cn/Y2020/V37/I8/087502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Pengpeng Shi
[1]Joule J P 1842 Ann. Electr. Magn. Chem. 8 219
[2] Villari E 1865 Ann. Phys. (Leipzig) 202 87
[3]Jiles D C 2015 Introduction to Magnetism and Magnetic Materials (Florida: CRC Press)
[4] Chen A T and Zhao Y G 2018 Acta Phys. Sin. 67 157513 (in Chinese)
[5] Shi P P, Su S Q and Chen Z M 2020 J. Nondestr. Eval. 39 43
[6] Shi P P, Jin K and Zheng X J 2017 Int. J. Mech. Sci. 124 229
[7] Jiles D C and Atherton D L 1984 J. Phys. D 17 1265
[8] Sablik M J, Kwun H, Burkhardt G L et al. 1987 J. Appl. Phys. 61 3799
[9] Jiles D C and Devine M K 1994 J. Appl. Phys. 76 7015
[10] Jiles D C 1995 J. Phys. D 28 1537
[11] Liu Q Y, Luo X, Zhu H Y et al. 2017 Acta Phys. Sin. 66 107501 (in Chinese)
[12] Shi P P 2020 J. Magn. Magn. Mater. 512 166980
[13] Raghunathan A, Melikhov Y, Snyder J E et al. 2009 IEEE Trans. Magn. 45 3954
[14] Sablik M J, Rubin S W, Riley L A et al. 1993 J. Appl. Phys. 74 480
[15] Zheng X J and Liu X E 2005 J. Appl. Phys. 97 053901
[16] Zheng X J and Sun L 2007 J. Magn. Magn. Mater. 309 263
[17] Jin K, Kou Y and Zheng X J 2012 J. Magn. Magn. Mater. 324 1954
[18] Shi P P, Jin K and Zheng X J 2016 J. Appl. Phys. 119 145103
[19] Shi P P, Zhang P C, Jin K et al. 2018 J. Appl. Phys. 123 145102
[20] Daniel L 2018 Eur. Phys. J. Appl. Phys. 83 30904
[21] Wu L B, Yao K, Zhao B X et al. 2019 Appl. Phys. Lett. 115 162406
[22] Hubert O and Daniel L 2010 IEEE Trans. Magn. 46 401
[23] Li Y Q, Yue M, Peng Y et al. 2018 Chin. Phys. B 27 087502
[24] Smith Ralph C 2005 Smart Material Systems: Model Development (Philadelphia: Society for Industrial and Applied Mathematics)
[25] Kuruzar M E and Cullity B D 1963 Int. J. Eng. Sci. 1 323
[26] Zhou H M, Zhou Y H and Zheng X J 2008 J. Appl. Phys. 104 023907
[27]Bertotti G 1998 Hysteresis in Magnetism (New York: Academic Press)
[28] Raghunathan A, Melikhov Y, Snyder J E and Jiles D C 2009 Appl. Phys. Lett. 95 172510
[29] Wang Z, Liu J, Jiang C and Xu H B 2011 J. Appl. Phys. 109 123923
Related articles from Frontiers Journals
[1] Li-Yu HAO, Tie Yang, Ming Tan. Negative Thermal Expansion and Spontaneous Magnetostriction of Nd$_{2}$Fe$_{16.5}$Cr$_{0.5}$ Compound[J]. Chin. Phys. Lett., 2020, 37(1): 087502
[2] Li-Yu HAO, Tie YANG, Xiao-Tian WANG, Ming TAN. Negative Thermal Expansion of the Dy$_{2}$Fe$_{16}$Cr Compound[J]. Chin. Phys. Lett., 2019, 36(6): 087502
[3] Hao He, Jiang-Tao Zhao, Zhen-Lin Luo, Yuan-Jun Yang, Han Xu, Bin Hong, Liang-Xin Wang, Rui-Xue Wang, Chen Gao. The Electric-Field Controllable Non-Volatile 35$^{\circ}$ Rotation of Magnetic Easy Axis in Magnetoelectric CoFeB/(001)-Cut Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$-25%PbTiO$_{3}$ Heterostructure[J]. Chin. Phys. Lett., 2016, 33(06): 087502
[4] CHEN Xu-Liang, SONG Wen-Hai, YANG Zhao-Rong. Field-Induced Structural Transition in the Bond Frustrated Spinel ZnCr2Se4[J]. Chin. Phys. Lett., 2015, 32(12): 087502
[5] ZHAO Ke-Han, WANG Yu-Hang, SHI Xiao-Lan, LIU Na, ZHANG Liu-Wan. Ferroelectricity in the Ferrimagnetic Phase of Fe1?xMnxV2O4[J]. Chin. Phys. Lett., 2015, 32(08): 087502
[6] WANG Kai, LIU Tie, GAO Peng-Fei, WANG Qiang, LIU Yin, HE Ji-Cheng. Magnetostriction Increase of Tb0.3Dy0.7Fe1.95 Alloy Prepared by Solidification in High Magnetic Fields[J]. Chin. Phys. Lett., 2015, 32(03): 087502
[7] LI Yan-Qin LI Xue-Hui. Influence of Perpendicular Magnetic Field on Apparent Density and Microstructure of Magnetic Fluid[J]. Chin. Phys. Lett., 2012, 29(10): 087502
[8] ZHANG Chang-Sheng, MA Tian-Yu, PAN Xing-Wen, YAN Mi. Domain Rotation Simulation of the Magnetostriction Jump Effect of <110> Oriented TbDyFe Crystals[J]. Chin. Phys. Lett., 2012, 29(2): 087502
[9] ZHOU Yun**, CHEN Miao-Gen, FENG Zhen-Jie, WANG Xin-Yan, CUI Yu-Jian, ZHANG Jin-Cang . High Magnetoelectric Coupling in Nano–Microscale Particulate Composites at Low Frequency[J]. Chin. Phys. Lett., 2011, 28(10): 087502
[10] WANG Hong-Tao, ZHOU Tong, HONG Bo, TAO Qian, XU Zhu-An** . Magnetic Properties of Orthorhombic Perovskite Ho1−xLaxMnO3[J]. Chin. Phys. Lett., 2011, 28(2): 087502
[11] LIU Jun-Ming, , CHAN-WONG Lai-Wa, CHOY Chung-Loong. Magnetoelectric Coupling Induced Electric Dipole Glass State in Heisenberg Spin Glass[J]. Chin. Phys. Lett., 2009, 26(8): 087502
[12] HAO Yan-Ming, ZHANG Yan-Yan, JIANG Xin-Yuan, GAO Chun-Jing, WU Yan-Zhao. Thermal Expansion Anomaly and Spontaneous Magnetostriction of Y2Fe14Al3 Compound[J]. Chin. Phys. Lett., 2009, 26(2): 087502
[13] YANG Chang-Ping, DENG Heng, CHEN Shun-Sheng, WANG Hao, WEN Zhen-Chao, HAN Xiu-Feng, K. Bä, rner. Correlation between Electroresistance and Magnetoresistance in Slight Oxygen-Deficient Nd0.67Sr0.33MnO3-δ Polycrystalline Ceramics[J]. Chin. Phys. Lett., 2008, 25(10): 087502
[14] PEI Yong-Mao, FANG Dai-Ning. Young's Modulus Anisotropy and Magnetomechanical Damping of [110]Oriented Tb0.3 Dy0.7 Fe1.95 Alloy[J]. Chin. Phys. Lett., 2007, 24(6): 087502
[15] WANG Jing-Min, WANG Yu-Fei, JIANG Cheng-Bao, XU Hui-Bin. Magnetostrain and Magnetization of the Ni50Mn27.5Ga22.5 Single Crystal[J]. Chin. Phys. Lett., 2006, 23(5): 087502
Viewed
Full text


Abstract