CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Mode Structures and Damping of Quantized Spin Waves in Ferromagnetic Nanowires |
Qingwei Fu1, Yong Li2, Lina Chen1, Fusheng Ma2, Haotian Li1, Yongbing Xu3,4, Bo Liu5, Ronghua Liu1*, and Youwei Du1 |
1National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China 2Jiangsu Key Laboratory of Opto-Electronic Technology, Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China 3York-Nanjing Joint Center (YNJC) for Spintronics and Nanoengineering, School of Electronics Science and Engineering, Nanjing University, Nanjing 210093, China 4Spintronics and Nanodevice Laboratory, Department of Electronics, University of York, York YO10 5DD, United Kingdom 5Key Laboratory of Spintronics Materials, Devices and Systems of Zhejiang Province, Hangzhou 311300, China
|
|
Cite this article: |
Qingwei Fu, Yong Li, Lina Chen et al 2020 Chin. Phys. Lett. 37 087503 |
|
|
Abstract Magnonic devices based on spin waves are considered as a new generation of energy-efficient and high-speed devices for storage and processing of information. Here we experimentally demonstrate that three distinct dominated magneto-dynamic modes are excited simultaneously and coexist in a transversely magnetized ferromagnetic wire by the ferromagnetic resonance (FMR) technique. Besides the uniform FMR mode, the spin-wave well mode, the backward volume magnetostatic spin-wave mode, and the perpendicular standing spin-wave mode are experimentally observed and further confirmed with more detailed spatial profiles by micromagnetic simulation. Furthermore, our experimental approach can also access and reveal damping coefficients of these spin-wave modes, which provides essential information for development of magnonic devices in the future.
|
|
Received: 25 April 2020
Published: 28 July 2020
|
|
PACS: |
75.40.Gb
|
(Dynamic properties?)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
75.78.-n
|
(Magnetization dynamics)
|
|
75.78.Cd
|
(Micromagnetic simulations ?)
|
|
|
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2016YFA0300803), the Open Research Fund of Jiangsu Provincial Key Laboratory for Nanotechnology, the National Natural Science Foundation of China (Grant Nos. 11774150 and 11704191), and the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20171026 and BK20170627). |
|
|
[1] | Wagner K et al. 2016 Nat. Nanotechnol. 11 432 |
[2] | Lan J, Yu W, Wu R and Xiao J 2015 Phys. Rev. X 5 041049 |
[3] | Min R et al. 2009 Chin. Phys. B 18 2006 |
[4] | Zhang G F et al. 2015 Chin. Phys. B 24 097503 |
[5] | Li S F et al. 2014 Chin. Phys. Lett. 31 017502 |
[6] | Duan Z et al. 2014 Phys. Rev. B 90 024427 |
[7] | Rana B and Otani Y 2018 Phys. Rev. Appl. 9 014033 |
[8] | Bocklage L et al. 2014 J. Phys.: Condens. Matter 26 266003 |
[9] | Park J P et al. 2002 Phys. Rev. Lett. 89 277201 |
[10] | Jorzick J et al. 1999 Phys. Rev. B 60 15194 |
[11] | Purnama I, Moon J H and You C Y 2019 Sci. Rep. 9 13226 |
[12] | Huo Y et al. 2016 Phys. Rev. B 94 184421 |
[13] | Li Y and Bailey W E 2016 Phys. Rev. Lett. 116 117602 |
[14] | Nembach H T, Shaw J M, Boone C T and Silva T J 2013 Phys. Rev. Lett. 110 117201 |
[15] | Shaw J M, Silva T J, Schneider M L and McMichael R D 2009 Phys. Rev. B 79 184404 |
[16] | de Loubens G et al. 2007 Phys. Rev. Lett. 98 127601 |
[17] | Jorzick J et al. 2002 Phys. Rev. Lett. 88 047204 |
[18] | Bayer C, Demokritov S O, Hillebrands B and Slavin A N 2003 Appl. Phys. Lett. 82 607 |
[19] | McMichael R D and Maranville B B 2006 Phys. Rev. B 74 024424 |
[20] | Bryant P and Suhl H 1989 Appl. Phys. Lett. 54 2224 |
[21] | Bailleul M, Höllinger R and Fermon C 2006 Phys. Rev. B 73 104424 |
[22] | Kittel C 1948 Phys. Rev. 73 155 |
[23] | Guslienko K Y, Chantrell R W and Slavin A N 2003 Phys. Rev. B 68 024422 |
[24] | Zhang S and Zhang S S L 2009 Phys. Rev. Lett. 102 086601 |
[25] | Schoen M A W et al. 2015 Phys. Rev. B 92 184417 |
[26] | Boone C T et al. 2009 Phys. Rev. Lett. 103 167601 |
[27] | Wong C H and Tserkovnyak Y 2009 Phys. Rev. B 80 184411 |
[28] | Tserkovnyak Y, Hankiewicz E M and Vignale G 2009 Phys. Rev. B 79 094415 |
[29] | Foros J, Brataas A, Tserkovnyak Y and Bauer G E W 2008 Phys. Rev. B 78 140402 |
[30] | Pincus P 1960 Phys. Rev. 118 658 |
[31] | Kalinikos B A and Slavin A N 1986 J. Phys. C 19 7013 |
[32] | Almeida N S and Mills D L 1996 Phys. Rev. B 53 12232 |
[33] | de Loubens G, Naletov V V and Klein O 2005 Phys. Rev. B 71 180411 |
[34] | Vansteenkiste A et al. 2014 AIP Adv. 4 107133 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|