Chin. Phys. Lett.  2020, Vol. 37 Issue (3): 030302    DOI: 10.1088/0256-307X/37/3/030302
GENERAL |
Quantized Superfluid Vortex Filaments Induced by the Axial Flow Effect
Hao Li1,2,3, Chong Liu1,2,3**, Zhan-Ying Yang1,2,3, Wen-Li Yang1,2,3,4
1School of Physics, Northwest University, Xi'an 710127
2Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127
3NSFC-SPTP Peng Huanwu Center for Fundamental Theory, Xi'an 710127
4Institute of Modern Physics, Northwest University, Xi'an 710127
Cite this article:   
Hao Li, Chong Liu, Zhan-Ying Yang et al  2020 Chin. Phys. Lett. 37 030302
Download: PDF(1130KB)   PDF(mobile)(1128KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the quantized superfluid vortex filaments induced by the axial flow effect, which exhibit intriguing loop structures on helical vortexes. Such new vortex filaments correspond to a series of soliton excitations including the multipeak soliton, W-shaped soliton, and anti-dark soliton, which have no analogue when the axial flow effect is absent. In particular, we show that the vortex filaments induced by the multipeak soliton and W-shaped soliton arise from the dual action of bending and twisting of the vortex, while the vortex filament induced by the anti-dark soliton is caused only by the bending action, which is consistent with the case of the standard bright soliton. These results will deepen our understanding of breather-induced vortex filaments and will be helpful for controllable ring-like excitations on vortices.
Received: 07 October 2019      Published: 22 February 2020
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  05.45.Yv (Solitons)  
  67.25.dk (Vortices and turbulence)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11705145, 11875220, 11947301, 11434013 and 11425522), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2018JQ1003), and the Major Basic Research Program of Natural Science of Shaanxi Province (Grant Nos. 2017KCT-12 and 2017ZDJC-32).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/3/030302       OR      https://cpl.iphy.ac.cn/Y2020/V37/I3/030302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hao Li
Chong Liu
Zhan-Ying Yang
Wen-Li Yang
[1]Barenghi C F and Parker N G 2016 A Primer on Quantum Fluids (Berlin: Springer)
[2]Carusotto I and Ciuti C 2013 Rev. Mod. Phys. 85 299
[3]Hasimoto H 1972 J. Fluid Mech. 51 477
[4]Salman H 2013 Phys. Rev. Lett. 111 165301
[5]Salman H 2014 J. Phys.: Conf. Ser. 544 012005
[6]Arms R J and Hama F R 1965 Phys. Fluids 8 553
[7]Da Rios L S 1906 Rendiconti del Circolo Matematico di Palermo 22 117
[8]Betchov R 1965 J. Fluid Mech. 22 471
[9]Fukumoto Y and Miyazaki T 1991 J. Fluid Mech. 222 369
[10]Maxworthy T, Hopfinger E J and Redekopp L G 1985 J. Fluid Mech. 151 141
[11]Maxworthy T, Mory M and Hopfinger E J 1983 AGARD Conference Proceedings 342 paper 29
[12]Demontis F, Ortenzi G and Van Der Mee C 2015 Physica D 313 61
[13]Moore D W and Saffman P G 1972 Philos. Trans. Roy. Soc. London Ser. A 272 403
[14]Pismen L M 1999 Vortices in Nonlinear Fields (Oxford: Clarendon)
[15]Hirota R 1973 J. Math. Phys. 14 805
[16]Li H, Liu C, Zhao W, Yang Z Y and Yang W L 2019 arXiv:1905.07878
[17]Shah R 2015 Rogue Waves on a Vortex Filament (Oxford: Oxford University Press)
[18]Liu C, Yang Z Y, Zhao L C, Duan L, Yang G Y and Yang W L 2016 Phys. Rev. E 94 042221
[19]Li Z H, Li L, Tian H P and Zhou G S 2000 Phys. Rev. Lett. 84 4096
[20]Zhao L C, Li S C and Ling L M 2014 Phys. Rev. E 89 023210
[21]Liu C, Yang Z Y, Zhao L C and Yang W L 2015 Phys. Rev. E 91 022904
[22]Kuznetsov E 1977 Sov. Phys. Dokl. 22 507
Ma Y C 1979 Stud. Appl. Math. 60 43
[23]Kivshar Y S 1991 Phys. Rev. A 43 1677(R)
Kivshar Y S and Afanasjev V V 1991 Phys. Rev. A 44 R1446
Related articles from Frontiers Journals
[1] Haipeng Xue, Lingchii Kong, and Biao Wu. Logarithmic Quantum Time Crystal[J]. Chin. Phys. Lett., 2022, 39(8): 030302
[2] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 030302
[3] Jun-Tao He, Ping-Ping Fang, and Ji Lin. Multi-Type Solitons in Spin-Orbit Coupled Spin-1 Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2022, 39(2): 030302
[4] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 030302
[5] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 030302
[6] Yu Mo, Cong Zhang, Shiping Feng, Shi-Jie Yang. Solitonic Diffusion of Wavepackets in One-Dimensional Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(12): 030302
[7] Jian-Wen Zhou, Xiao-Xun Li, Rui Gao, Wen-Shan Qin, Hao-Hao Jiang, Tao-Tao Li, Ju-Kui Xue. Modulational Instability of Trapped Two-Component Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(9): 030302
[8] Shi-Feng Yang, Zi-Tong Xu, Kai Wang, Xiu-Fei Li, Yue-Yang Zhai, Xu-Zong Chen. A Quasi-1D Potential for Bose Gas Phase Fluctuations[J]. Chin. Phys. Lett., 2019, 36(8): 030302
[9] C. Chen, Q. Liu, T. Z. Zhang, D. Li, P. P. Shen, X. L. Dong, Z.-X. Zhao, T. Zhang, D. L. Feng. Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li$_{0.84}$Fe$_{0.16}$)OHFeSe[J]. Chin. Phys. Lett., 2019, 36(5): 030302
[10] Bao-Guo Yang, Peng-Ju Tang, Xin-Xin Guo, Xu-Zong Chen, Biao Wu, Xiao-Ji Zhou. Period-Doubled Bloch States in a Bose–Einstein Condensate[J]. Chin. Phys. Lett., 2018, 35(7): 030302
[11] Peng Peng, Liang-Hui Huang, Dong-Hao Li, Zeng-Ming Meng, Peng-Jun Wang, Jing Zhang. Experimental Observation of Spin-Exchange in Ultracold Fermi Gases[J]. Chin. Phys. Lett., 2018, 35(3): 030302
[12] Xu-Dan Chai, Zi-Fa Yu, Ai-Xia Zhang, Ju-Kui Xue. Sound Wave of Spin–Orbit Coupled Bose–Einstein Condensates in Optical Lattice[J]. Chin. Phys. Lett., 2017, 34(9): 030302
[13] Zheng Zhou, Hong-Hua Zhong, Bo Zhu, Fa-Xin Xiao, Ke Zhu, Jin-Tao Tan. Collision Dynamics of Dissipative Matter-Wave Solitons in a Perturbed Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(11): 030302
[14] Yu-E Li, Ju-Kui Xue. Moving Matter-Wave Solitons in Spin–Orbit Coupled Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2016, 33(10): 030302
[15] Xin Zhang, Zi-Fa Yu, Ju-Kui Xue. Coherence of Disordered Bosonic Gas with Two- and Three-Body Interactions[J]. Chin. Phys. Lett., 2016, 33(04): 030302
Viewed
Full text


Abstract