GENERAL |
|
|
|
|
Energy Variance in Decoherence |
Zi-Gang Yuan1,2**, Xin-Yu Zhang1, He Zhao1, Yan-Chao Li3 |
1College of Mathematics and Physics, Beijing University of Chemical Technology, P. O. Box 26, Beijing 100029 2Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore 3Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Zi-Gang Yuan, Xin-Yu Zhang, He Zhao et al 2020 Chin. Phys. Lett. 37 030301 |
|
|
Abstract We study the effect of the initial-state energy variance to the short-time behavior of the Loschmidt echo (LE) in a purely dephasing model. We find that the short-time LE behaves as a Gaussian function with the width determined by the initial-state energy variance of the interaction Hamiltonian, while it is a quartic decaying function with the width determined by the initial-state energy variance of the commutator between the interaction Hamiltonian and the environmental Hamiltonian when the initial state is an eigenstate of the interaction Hamiltonian. Furthermore, the Gaussian envelope in the temporal evolution of LE in strong coupling regime is determined by the inband variance. We will also verify the above conclusion in the XY spin model (as environment).
|
|
Received: 02 October 2019
Published: 22 February 2020
|
|
PACS: |
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
75.10.Pq
|
(Spin chain models)
|
|
05.30.Pr
|
(Fractional statistics systems)
|
|
05.30.-d
|
(Quantum statistical mechanics)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No. 11204012. |
|
|
[1] | Zhang J, Han Y, Xu P and Zhang W 2016 Phys. Rev. A 94 053608 | [2] | Fer F 1958 Bull. Classe Sci. Acad. R. Belg. 44 818 | [3] | Takegoshi K, Miyazawa N, Sharma K and Madhu P 2015 J. Chem. Phys. 142 134201 | [4] | Tusun M, Rong X, and Du J F 2019 Chin. Phys. B 28 024204 | [5] | Vicari E 2018 Phys. Rev. A 98 052127 | [6] | Quan H T, Song Z, Liu X F, Zanardi P and Sun C P 2006 Phys. Rev. Lett. 96 140604 | [7] | Yuan Z G, Zhang P and Li S S 2007 Phys. Rev. A 75 012102 | [8] | Yuan Z G, Zhang P and Li S S 2007 Phys. Rev. A 76 042118 | [9] | Yuan Z G, Zhang P, Li S S and Jing J 2016 Ann. Phys. 365 223 | [10] | Sun Z, Wang X and Sun C P 2007 Phys. Rev. A 75 062312 | [11] | Cormick C and Paz J P 2008 Phys. Rev. A 77 022317 | [12] | Cormick C and Paz J P 2008 Phys. Rev. A 78 012357 | [13] | Cucchietti F M, Paz J P and Zurek W H 2005 Phys. Rev. A 72 052113 | [14] | Cucchietti F M, Fernandez-Vidal S and Paz J P 2007 Phys. Rev. A 75 032337 | [15] | Zurek W H, Cucchietti F M and Paz J P 2007 Acta Phys. Pol. B 38 1685 | [16] | Rossini D, Calarco T, Giovannetti V, Montangero S and Fazio R 2007 Phys. Rev. A 75 032333 | [17] | Damski B, Quan H T and Zurek W H 2011 Phys. Rev. A 83 062104 | [18] | Liu B Q, Shao B and Zou J 2009 Phys. Rev. A 80 062322 | [19] | Mukherjee V, Sharma S and Dutta A 2012 Phys. Rev. B 86 020301 | [20] | You W L and Dong Y L 2010 Eur. Phys. J. D 57 439 | [21] | Li Y C and Li S S 2007 Phys. Rev. A 76 032117 | [22] | Sharma S, Mukherjee V and Dutta A 2012 Eur. Phys. J. B 85 143 | [23] | Gorin T, Prosen T, Seligman T H and Znidaric M 2006 Phys. Rep. 435 33 | [24] | Casas F, Murua A and Nadinic M 2012 Comput. Phys. Commun. 183 2386 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|