Chin. Phys. Lett.  2020, Vol. 37 Issue (3): 030301    DOI: 10.1088/0256-307X/37/3/030301
GENERAL |
Energy Variance in Decoherence
Zi-Gang Yuan1,2**, Xin-Yu Zhang1, He Zhao1, Yan-Chao Li3
1College of Mathematics and Physics, Beijing University of Chemical Technology, P. O. Box 26, Beijing 100029
2Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
3Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Zi-Gang Yuan, Xin-Yu Zhang, He Zhao et al  2020 Chin. Phys. Lett. 37 030301
Download: PDF(512KB)   PDF(mobile)(506KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the effect of the initial-state energy variance to the short-time behavior of the Loschmidt echo (LE) in a purely dephasing model. We find that the short-time LE behaves as a Gaussian function with the width determined by the initial-state energy variance of the interaction Hamiltonian, while it is a quartic decaying function with the width determined by the initial-state energy variance of the commutator between the interaction Hamiltonian and the environmental Hamiltonian when the initial state is an eigenstate of the interaction Hamiltonian. Furthermore, the Gaussian envelope in the temporal evolution of LE in strong coupling regime is determined by the inband variance. We will also verify the above conclusion in the XY spin model (as environment).
Received: 02 October 2019      Published: 22 February 2020
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  75.10.Pq (Spin chain models)  
  05.30.Pr (Fractional statistics systems)  
  05.30.-d (Quantum statistical mechanics)  
Fund: Supported by the National Natural Science Foundation of China under Grant No. 11204012.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/3/030301       OR      https://cpl.iphy.ac.cn/Y2020/V37/I3/030301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zi-Gang Yuan
Xin-Yu Zhang
He Zhao
Yan-Chao Li
[1]Zhang J, Han Y, Xu P and Zhang W 2016 Phys. Rev. A 94 053608
[2]Fer F 1958 Bull. Classe Sci. Acad. R. Belg. 44 818
[3]Takegoshi K, Miyazawa N, Sharma K and Madhu P 2015 J. Chem. Phys. 142 134201
[4]Tusun M, Rong X, and Du J F 2019 Chin. Phys. B 28 024204
[5]Vicari E 2018 Phys. Rev. A 98 052127
[6]Quan H T, Song Z, Liu X F, Zanardi P and Sun C P 2006 Phys. Rev. Lett. 96 140604
[7]Yuan Z G, Zhang P and Li S S 2007 Phys. Rev. A 75 012102
[8]Yuan Z G, Zhang P and Li S S 2007 Phys. Rev. A 76 042118
[9]Yuan Z G, Zhang P, Li S S and Jing J 2016 Ann. Phys. 365 223
[10]Sun Z, Wang X and Sun C P 2007 Phys. Rev. A 75 062312
[11]Cormick C and Paz J P 2008 Phys. Rev. A 77 022317
[12]Cormick C and Paz J P 2008 Phys. Rev. A 78 012357
[13]Cucchietti F M, Paz J P and Zurek W H 2005 Phys. Rev. A 72 052113
[14]Cucchietti F M, Fernandez-Vidal S and Paz J P 2007 Phys. Rev. A 75 032337
[15]Zurek W H, Cucchietti F M and Paz J P 2007 Acta Phys. Pol. B 38 1685
[16]Rossini D, Calarco T, Giovannetti V, Montangero S and Fazio R 2007 Phys. Rev. A 75 032333
[17]Damski B, Quan H T and Zurek W H 2011 Phys. Rev. A 83 062104
[18]Liu B Q, Shao B and Zou J 2009 Phys. Rev. A 80 062322
[19]Mukherjee V, Sharma S and Dutta A 2012 Phys. Rev. B 86 020301
[20]You W L and Dong Y L 2010 Eur. Phys. J. D 57 439
[21]Li Y C and Li S S 2007 Phys. Rev. A 76 032117
[22]Sharma S, Mukherjee V and Dutta A 2012 Eur. Phys. J. B 85 143
[23]Gorin T, Prosen T, Seligman T H and Znidaric M 2006 Phys. Rep. 435 33
[24]Casas F, Murua A and Nadinic M 2012 Comput. Phys. Commun. 183 2386
Related articles from Frontiers Journals
[1] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 030301
[2] Song Wang, Lei Wang, Furong Zhang, and Ling-Jun Kong. Optimization of Light Field for Generation of Vortex Knot[J]. Chin. Phys. Lett., 2022, 39(10): 030301
[3] Weizheng Cao, Yunlong Su, Qi Wang, Cuiying Pei, Lingling Gao, Yi Zhao, Changhua Li, Na Yu, Jinghui Wang, Zhongkai Liu, Yulin Chen, Gang Li, Jun Li, and Yanpeng Qi. Quantum Oscillations in Noncentrosymmetric Weyl Semimetal SmAlSi[J]. Chin. Phys. Lett., 2022, 39(4): 030301
[4] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 030301
[5] Xiang Zhang, Zhaozheng Lyu, Guang Yang, Bing Li, Yan-Liang Hou, Tian Le, Xiang Wang, Anqi Wang, Xiaopei Sun, Enna Zhuo, Guangtong Liu, Jie Shen, Fanming Qu, and Li Lu. Anomalous Josephson Effect in Topological Insulator-Based Josephson Trijunction[J]. Chin. Phys. Lett., 2022, 39(1): 030301
[6] Jiong-Hao Wang, Yu-Liang Tao, and Yong Xu. Anomalous Transport Induced by Non-Hermitian Anomalous Berry Connection in Non-Hermitian Systems[J]. Chin. Phys. Lett., 2022, 39(1): 030301
[7] Yunqing Ouyang, Qing-Rui Wang, Zheng-Cheng Gu, and Yang Qi. Computing Classification of Interacting Fermionic Symmetry-Protected Topological Phases Using Topological Invariants[J]. Chin. Phys. Lett., 2021, 38(12): 030301
[8] Kun Luo, Wei Chen, Li Sheng, and D. Y. Xing. Random-Gate-Voltage Induced Al'tshuler–Aronov–Spivak Effect in Topological Edge States[J]. Chin. Phys. Lett., 2021, 38(11): 030301
[9] Zhuo Cheng and Zhenhua Yu. Supervised Machine Learning Topological States of One-Dimensional Non-Hermitian Systems[J]. Chin. Phys. Lett., 2021, 38(7): 030301
[10] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 030301
[11] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 030301
[12] Gang-Feng Guo, Xi-Xi Bao, Lei Tan, and Huai-Qiang Gu. Phase-Modulated 2D Topological Physics in a One-Dimensional Ultracold System[J]. Chin. Phys. Lett., 2021, 38(4): 030301
[13] Tianyu Li, Yong-Sheng Zhang, and Wei Yi. Two-Dimensional Quantum Walk with Non-Hermitian Skin Effects[J]. Chin. Phys. Lett., 2021, 38(3): 030301
[14] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 030301
[15] Kaixuan Zhang, Yongping Du, Pengdong Wang, Laiming Wei, Lin Li, Qiang Zhang, Wei Qin, Zhiyong Lin, Bin Cheng, Yifan Wang, Han Xu, Xiaodong Fan, Zhe Sun, Xiangang Wan, and Changgan Zeng. Butterfly-Like Anisotropic Magnetoresistance and Angle-Dependent Berry Phase in a Type-II Weyl Semimetal WP$_{2}$[J]. Chin. Phys. Lett., 2020, 37(9): 030301
Viewed
Full text


Abstract