Chin. Phys. Lett.  2020, Vol. 37 Issue (3): 030501    DOI: 10.1088/0256-307X/37/3/030501
GENERAL |
Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation
Bao Wang1, Zhao Zhang2, Biao Li2**
1Robotics Institute, Ningbo University of Technology, Ningbo 315211
2School of Mathematics and Statistics, Ningbo University, Ningbo 315211
Cite this article:   
Bao Wang, Zhao Zhang, Biao Li 2020 Chin. Phys. Lett. 37 030501
Download: PDF(719KB)   PDF(mobile)(716KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on velocity resonance and Darboux transformation, soliton molecules and hybrid solutions consisting of soliton molecules and smooth positons are derived. Two new interesting results are obtained: the first is that the relationship between soliton molecules and smooth positons is clearly pointed out, and the second is that we find two different interactions between smooth positons called strong interaction and weak interaction, respectively. The strong interaction will only disappear when $t \to \infty$. This strong interaction can also excite some periodic phenomena.
Received: 29 December 2019      Published: 22 February 2020
PACS:  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos. 11775121, Department of Education of Zhejiang Province under Grant No. Y201839043 and the K.C. Wong Magna Fund in Ningbo University.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/3/030501       OR      https://cpl.iphy.ac.cn/Y2020/V37/I3/030501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bao Wang
Zhao Zhang
Biao Li
[1]He J S, Zhang H R, Wang L H, Porsezian K and Fokas A S 2013 Phys. Rev. E 87 052914
[2]He J S, Wang L H, Li L J, Porsezian K and Erdélyi R 2014 Phys. Rev. E 89 062917
[3]Wang L H, He J S, Xu H, Wang J and Porsezian K 2017 Phys. Rev. E 95 042217
[4]He J S, Zhang L, Cheng Y and Li Y S 2006 Sci. Chin. Ser. A: Math. 49 1867 DOI: 10.1007/s11425-006-2025
[5]Lakomy K, Nath R and Santos L 2012 Phys. Rev. A 85 033618
[6]Herink G, Kurtz F, Jalali B, Solli D R and Ropers C 2017 Science 356 50
[7]Liu X M, Yao X K and Cui Y D 2018 Phys. Rev. Lett. 121 023905
[8]Lou S Y 2019 arXiv:1909.03399
[9]Zhang Z, Yang S X and Li B 2019 Chin. Phys. Lett. 36 120501
[10]Zhang Z, Yang X Y and Li B 2020 Appl. Math. Lett. 103 106168
[11]Zhang Y S, Guo L J, He J S and Zhou Z X 2015 Lett. Math. Phys. 105 853
[12]Qiu D Q and Cheng W G 2019 Appl. Math. Lett. 98 13
[13]Liu W, Zhang Y S and He J S 2018 Waves Random Complex Media 28 203
[14]Song W J, Xu S W, Li M H and He J S 2019 Nonlinear Dyn. 97 2135
[15]Zhang Z, Yang X Y, Li W T and Li B 2019 Chin. Phys. B 28 110201
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 030501
[2] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 030501
[3] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 030501
[4] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 030501
[5] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 030501
[6] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 030501
[7] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 030501
[8] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 030501
[9] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 030501
[10] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 030501
[11] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 030501
[12] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 030501
[13] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 030501
[14] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 030501
[15] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 030501
Viewed
Full text


Abstract