Chin. Phys. Lett.  2020, Vol. 37 Issue (12): 124203    DOI: 10.1088/0256-307X/37/12/124203
Extreme Ultraviolet Frequency Comb with More than 100 μW Average Power below 100 nm
Jin Zhang1,2, Lin-Qiang Hua1,2*, Zhong Chen1,2, Mu-Feng Zhu1,2, Cheng Gong1,2, and Xiao-Jun Liu1,2*
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
2University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article:   
Jin Zhang, Lin-Qiang Hua, Zhong Chen et al  2020 Chin. Phys. Lett. 37 124203
Download: PDF(766KB)   PDF(mobile)(755KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Extreme ultraviolet (XUV) frequency comb is a powerful tool in precision measurement. It also brings many new opportunities to the field of strong field physics since high harmonic generation related phenomena can be studied with high repetition rate. We demonstrate the generation of an XUV frequency comb with the aid of intra-cavity high harmonic generation process. The setup is driven by a high power infrared frequency comb, and an average power of 4.5 kW is reached in the femtosecond enhancement cavity. With Xe gas as the working media, harmonics up to the 19th order are observed. Power measurement indicates that as much as 115.9 μW (1.3 mW) are generated at $\sim$94 nm ($\sim$148 nm). The shortest wavelength we can reach is $\sim$55 nm. The coherence of the generated light is tested with an optical-heterodyne-based measurement of the third harmonic. The resulted line width is $\sim$3 Hz. In addition, with this system, we also observe a strong suppression of below threshold harmonics from O$_2$ compared to that from Xe. These results suggest that the current system is ready for precision spectroscopic measurements with few-electron atomic and molecular systems in XUV region as well as the study of strong field physics with an unprecedented 100 MHz repetition rate.
Received: 25 August 2020      Published: 08 December 2020
PACS:  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11674356 and 11527807), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21010400).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Jin Zhang
Lin-Qiang Hua
Zhong Chen
Mu-Feng Zhu
Cheng Gong
and Xiao-Jun Liu
[1] Jones R J, Moll K D, Thorpe M J and Ye J 2005 Phys. Rev. Lett. 94 193201
[2] Gohle C, Udem T, Herrmann M, Rauschenberger J, Holzwarth R, Schuessler H A, Krausz F and Hänsch T W 2005 Nature 436 234
[3] Ozawa A, Rauschenberger J, Gohle C, Herrmann M, Walker D R, P V, Fernandez A, Graf R, Apolonski A, Holzwarth R, Krausz F, Hänsch T W and Udem T 2008 Phys. Rev. Lett. 100 253901
[4] Yost D C, Schibli T R, Ye J, Tate J L, Hostetter J, Gaarde M B and Schafer K J 2009 Nat. Phys. 5 815
[5] Pronin O, Pervak V, Fill E, Rauschenberger J, Krausz F and Apolonski A 2011 Opt. Express 19 10232
[6] Yang Y Y, Süßmann F, Zherebtsov S, Pupeza I, Kaster J, Lehr D, Fuchs H J, Kley E B, Fill E, Duan X M, Zhao Z S, Krausz F, Stebbings S L and Kling M F 2011 Opt. Express 19 1954
[7] Lee J, Carlson D R and Jones R J 2011 Opt. Express 19 23315
[8] Cingöz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hartl I and Ye J 2012 Nature 482 68
[9] Mills A K, Hammond T J, Lam M H C and Jones D J 2012 J. Phys. B: At. Mol. Opt. Phys. 45 142001
[10] Pupeza I, Holzberger S, Eidam T, Carstens H, Esser D, Weitenberg J, Russbuldt P, Rauschenberger J, Limpert J, Udem T, Tünnermann A, Hänsch T W, Apolonski A, Krausz F and Fill E 2013 Nat. Photon. 7 608
[11] Pupeza I, Högner M, Weitenberg J, Holzberger S, Esser D, Eidam T, Limpert J, Tünnermann A, Fill E and Yakovlev V S 2014 Phys. Rev. Lett. 112 103902
[12] Benko C, Allison T K, Cingoz A, Hua L, Labaye F, Yost D C and Ye J 2014 Nat. Photon. 8 530
[13] Benko C, Hua L, Allison T K, Labaye F and Ye J 2015 Phys. Rev. Lett. 114 153001
[14] Holzberger S, Lilienfein N, Carstens H, Saule T, Högner M, Lücking F, Trubetskov M, P V, Eidam T, Limpert J, Tünnermann A, Fill E, Krausz F and Pupeza I 2015 Phys. Rev. Lett. 115 023902
[15] Porat G, Heyl C M, Schoun S B, Benko C, Dorre N, Corwin K L and Ye J 2018 Nat. Photon. 12 387
[16] Seres J, Seres E, Serrat C, Young E C, Speck J S and Schumm T 2019 Opt. Express 27 6618
[17] Ozawa A and Kobayashi Y 2013 Phys. Rev. A 87 022507
[18] Högner M, T V and Pupeza I 2017 New J. Phys. 19 033040
[19] Zheng X, Sun Y R, Chen J and Hu S 2018 Acta Phys. Sin. 67 164203 (in Chinese)
[20] Eyler E E, Chieda D E, Stowe M C, Thorpe M J, Schibli T R and Ye J 2008 Eur. Phys. J. D 48 43
[21] Bergeson S D, Balakrishnan A, Baldwin K G H, Lucatorto T B, Marangos J P, McIlrath T J, O'Brian T R, Rolston S L, Sansonetti C J, Wen J, Westbrook N, Cheng C H and Eyler E E 1998 Phys. Rev. Lett. 80 3475
[22] Haas M, Jentschura U D, Keitel C H, Kolachevsky N, Herrmann M, Fendel P, Fischer M, Udem T, Holzwarth R, Hänsch T W, Scully M O and Agarwal G S 2006 Phys. Rev. A 73 052501
[23] Herrmann M, Haas M, Jentschura U D, Kottmann F, Leibfried D, Saathoff G, Gohle C, Ozawa A, B V, Knunz S, Kolachevsky N, Schussler H A, Hänsch T W and Udem T 2009 Phys. Rev. A 79 052505
[24] Prior M H and Shugart H A 1971 Phys. Rev. Lett. 27 902
[25]Semczuk M 2009 An Ion Trap for Laser Spectroscopy on Lithium Ions MS Thesis (Warsaw: University of Warsaw)
[26] Zhang J, Hua L Q, Yu S G, Chen Z and Liu X J 2019 Chin. Phys. B 28 044206
[27] Black E D 2001 Am. J. Phys. 69 79
[28]Publications J A R 1967 Techniques in Vacuum Ultraviolet Spectroscopy (PIED Publications)
[29] Moharam M G, Grann E B and Pommet D A 1995 J. Opt. Soc. Am. A 12 1068
[30] Moharam M G, Pommet D A and Grann E B 1995 J. Opt. Soc. Am. A 12 1077
[31] Li G H, Yao J P, Zhang H S, Jing C R, Zeng B, Chu W, Ni J L, Xie H Q, Liu X J, Chen J, Cheng Y and Xu Z Z 2013 Phys. Rev. A 88 043401
[32] Shan B, Tong X M, Zhao Z X, Chang Z H and Lin C D 2002 Phys. Rev. A 66 061401
[33] Lin Z Y, Jia X Y, Wang C L, Hu Z L, Kang H P, Quan W, Lai X Y, Liu X J, Chen J, Zeng B, Chu W, Yao J P, Cheng Y and Xu Z Z 2012 Phys. Rev. Lett. 108 223001
Related articles from Frontiers Journals
[1] Zhi-Feng Zhang, Shuai Li, Yang Li, Yang Kou, Ke Liu, Yan-Yong Lin, Lei Yuan, Yi-Ting Xu, Qin-Jun Peng, Zu-Yan Xu. A 117-W 1.66-Times Diffraction Limited Continuous-Wave Nd:YVO$_{4}$ Zigzag Slab Laser with Multilayer Amplified-Spontaneous-Emission Absorbing Coatings *[J]. Chin. Phys. Lett., 0, (): 124203
[2] Zhi-Feng Zhang, Shuai Li, Yang Li, Yang Kou, Ke Liu, Yan-Yong Lin, Lei Yuan, Yi-Ting Xu, Qin-Jun Peng, Zu-Yan Xu. A 117-W 1.66-Times Diffraction Limited Continuous-Wave Nd:YVO$_{4}$ Zigzag Slab Laser with Multilayer Amplified-Spontaneous-Emission Absorbing Coatings[J]. Chin. Phys. Lett., 2020, 37(6): 124203
[3] B. Nizamani, S. Salam, A. A. A. Jafry, N. M. Zahir, N. Jurami, M. I. M. Abdul Khudus, A. Shuhaimi, E. Hanafi, S. W. Harun. Indium Tin Oxide Coated D-Shape Fiber as a Saturable Absorber for Generating a Dark Pulse Mode-Locked Laser[J]. Chin. Phys. Lett., 2020, 37(5): 124203
[4] Yi-Chen Xu, Zhi-Min Wang, Feng-Feng Zhang, Rui-Nan Yang, Xu-Chao Liu, Yue Song, Yong Bo, Qin-Jun Peng, Zu-Yan Xu. High-Efficiency Spectral-Beam-Combined 930nm Diode Laser Source[J]. Chin. Phys. Lett., 2020, 37(5): 124203
[5] Meng-Han Liu, Peng Chen, Zi-Li Xie, Xiang-Qian Xiu, Dun-Jun Chen, Bin Liu, Ping Han, Yi Shi, Rong Zhang, You-Dou Zheng, Kai Cheng, Li-Yang Zhang. Approach to Single-Mode Dominated Resonant Emission in GaN-Based Square Microdisks on Si[J]. Chin. Phys. Lett., 2020, 37(5): 124203
[6] H. Ahmad, M. F. Ismail, S. N. Aidit. Optically Modulated Tunable O-Band Praseodymium-Doped Fluoride Fiber Laser Utilizing Multi-Walled Carbon Nanotube Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(10): 124203
[7] Zhong-Hao Chen, Hong-Wei Qu, Xiao-Long Ma, Ai-Yi Qi, Xu-Yan Zhou, Yu-Fei Wang, Wan-Hua Zheng. High-Brightness Low-Divergence Tapered Lasers with a Narrow Taper Angle[J]. Chin. Phys. Lett., 2019, 36(8): 124203
[8] Ying-Yi Li, Ke Yang, Gao-You Liu, Li-Wei Xu, Bao-Quan Yao, You-Lun Ju, Tong-Yu Dai, Xiao-Ming Duan. A 1kHz Fe:ZnSe Laser Gain-Switched by a ZnGeP$_{2}$ Optical Parametric Oscillator at 77K[J]. Chin. Phys. Lett., 2019, 36(7): 124203
[9] Ke-Ling Gong, Jian Xu, Lin Zhang, Ya-Ding Guo, Bao-Shan Wang, Yang Li, Shuai Li, Zhong-Zheng Chen, Lei Yuan, Yang Kou, Yi-Ting Xu, Qin-Jun Peng, Zu-Yan Xu. High Power Pulse Laser Reflection Sequence Combination with a Fast Steering Mirror[J]. Chin. Phys. Lett., 2019, 36(7): 124203
[10] Ying-Yi Li, You-Lun Ju, Tong-Yu Dai, Xiao-Ming Duan, Chun-Fa Guo, Li-Wei Xu. A Gain-Switched Fe:ZnSe Laser Pumped by a Pulsed Ho,Pr:LLF Laser[J]. Chin. Phys. Lett., 2019, 36(4): 124203
[11] Shuai Li, Ya-Ding Guo, Zhong-Zheng Chen, Lin Zhang, Ke-Ling Gong, Zhi-Feng Zhang, Bao-Shan Wang, Jian Xu, Yi-Ting Xu, Lei Yuan, Yang Kou, Yang Liu, Yan-Yong Lin, Qin-Jun Peng, Zu-Yan Xu. The 10kW Level High Brightness Face-Pumped Slab Nd:YAG Amplifier with a Hybrid Cooling System[J]. Chin. Phys. Lett., 2019, 36(4): 124203
[12] Teng Sun, Jian-Guo Xin, Yu-Chen Song. Laser-Diode Pumped Passive Q-Switched Laser with Quick Tunable Pulse-Width Capability[J]. Chin. Phys. Lett., 2019, 36(3): 124203
[13] Alabbas A. Al-Azzawi, Aya A. Almukhtar, P. H. Reddy, D. Dutta, S. Das, A. Dhar, M. C. Paul, U. N. Zakaria, S. W. Harun. A Flat-Gain Double-Pass Amplifier with New Hafnia-Bismuth-Erbium Codoped Fiber[J]. Chin. Phys. Lett., 2018, 35(5): 124203
[14] Zhao-Yang Tai, Lu-Lu Yan, Yan-Yan Zhang, Xiao-Fei Zhang, Wen-Ge Guo, Shou-Gang Zhang, Hai-Feng Jiang. Transportable 1555-nm Ultra-Stable Laser with Sub-0.185-Hz Linewidth[J]. Chin. Phys. Lett., 2017, 34(9): 124203
[15] Shang- Ming Ou, Guan-Yu Liu, Hui Lei, Zhi-Gang Zhang, Qing-Mao Zhang. Generation of 47fs Pulses from an Er:Fiber Amplifier[J]. Chin. Phys. Lett., 2017, 34(7): 124203
Full text