FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties |
Xue-Chun Zhao1, Lei Zhang1, Rong Lin1,2, Shu-Qin Lin1, Xin-Lei Zhu3, Yang-Jian Cai1,3*, and Jia-Yi Yu1* |
1Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China 2College of Physics and Electronic Engineering, Heze University, Heze 274015, China 3School of Physical Science and Technology, Soochow University, Suzhou 215006, China
|
|
Cite this article: |
Xue-Chun Zhao, Lei Zhang, Rong Lin et al 2020 Chin. Phys. Lett. 37 124202 |
|
|
Abstract We study the evolution of spectral intensity and degree of coherence of a new class of partially coherent beams, Hermite non-uniformly correlated array beams, in free space and in turbulence, based on the extended Huygens–Fresnel integral. Such beams possess controllable rectangular grid distributions due to multi-self-focusing propagation property. Furthermore, it is demonstrated that adjusting the initial beam parameters, mode order, shift parameters, array parameters and correlation width plays a role in resisting intensity and degree of coherence degradation effects of the turbulence.
|
|
Received: 28 September 2020
Published: 08 December 2020
|
|
|
|
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2019YFA0705000), the National Natural Science Foundation of China (Grant Nos. 91750201, 11525418, 11947240, 11974218, 12004218, and 11904087), the Local Science and Technology Development Project of the Central Government (Grant No. YDZX20203700001766), and Innovation Group of Jinan (Grant No. 2018GXRC010). |
|
|
[1] | Gbur G 2014 J. Opt. Soc. Am. A 31 2038 |
[2] | Wang F, Liu X and Cai Y 2015 Prog. Electromagn. Res. 150 123 |
[3] | Chen Y, Ponomarenko S A and Cai Y 2016 Appl. Phys. Lett. 109 061107 |
[4] | Cai Y, Chen Y, Yu J, Liu X and Liu L 2017 Prog. Opt. 62 157 |
[5] | Gbur G and Wolf E 2002 J. Opt. Soc. Am. A 19 1592 |
[6] | Shirai T, Dogariu A and Wolf E 2003 J. Opt. Soc. Am. A 20 1094 |
[7] | Lajunen H and Saastamoinen T 2013 Opt. Express 21 190 |
[8] | Yu J, Cai Y and Gbur G 2018 Opt. Express 26 27894 |
[9] | Yu J, Zhu X, Lin S, Wang F, Gbur G and Cai Y 2020 Opt. Lett. 45 3824 |
[10] | Gori F and Santarsiero M 2007 Opt. Lett. 32 3531 |
[11] | Gu Y and Gbur G 2013 Opt. Lett. 38 1395 |
[12] | Yu J, Wang F, Liu L, Cai Y and Gbur G 2018 Opt. Express 26 16333 |
[13] | Lin S, Wang C, Zhu X, Lin R, Wang F, Gbur G, Cai Y and Yu J 2020 Opt. Express 28 27238 |
[14] | Cai Y, Chen Y, Eyyuboglu H T and Baykal Y 2007 Appl. Phys. B 88 467 |
[15] | Zhou X, Zhou Z, Tian P and Yuan X 2019 Appl. Opt. 58 9443 |
[16] | Singh R K, Sharma A M and Senthilkumaran P 2015 Opt. Lett. 40 2751 |
[17] | Wan L and Zhao D 2018 Opt. Lett. 43 3554 |
[18] | Mu T, Chen Z, Pacheco S, Wu R, Zhang C and Liang R 2016 Opt. Lett. 41 261 |
[19] | Liang C, Zhu X, Mi C, Peng X, Wang F, Cai Y and Ponomarenko S A 2018 Opt. Lett. 43 3188 |
[20] | Andrews L C and Phillips R L 2005 Laser Beam Propagation through Random Media 2nd edn (Bellinghan: SPIE) |
[21] | Toselli I, Andrews L C, Phillips R L and F V 2008 Opt. Eng. 47 026003 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|