CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Ferromagnetism in Layered Metallic Fe$_{1/4}$TaS$_{2}$ in the Presence of Conventional and Dirac Carriers |
Jin-Hua Wang1,2, Ya-Min Quan1, Da-Yong Liu1, Liang-Jian Zou1,2** |
1Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 2Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026
|
|
Cite this article: |
Jin-Hua Wang, Ya-Min Quan, Da-Yong Liu et al 2020 Chin. Phys. Lett. 37 017101 |
|
|
Abstract We present the microscopic origin of the ferromagnetism of Fe$_{0.25}$TaS$_{2}$ and its finite-temperature magnetic properties. The band structures of Fe$_{0.25}$TaS$_{2}$ are first obtained by the first-principles calculations and it is found that both conventional and Dirac carriers coexist in metallic Fe$_{0.25}$TaS$_{2}$. Accordingly, considering the spin-orbit coupling of Fe $3d$ ion, we derive an effective Ruderman–Kittle–Kasuya–Yosida-type Hamiltonian between Fe spins in the presence of both the conventional parabolic-dispersion and the Dirac linear-dispersion carriers, which contains a Heisenberg-like, an Ising-like and an XY-like term. In addition, we obtain the ferromagnetic Curie temperature $T_{\rm c}$ by using the cluster self-consistent field method. Our results could address not only the high ferromagnetic Curie temperature but also the large magnetic anisotropy in Fe$_{x}$TaS$_{2}$.
|
|
Received: 11 October 2019
Published: 23 December 2019
|
|
PACS: |
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
75.30.Hx
|
(Magnetic impurity interactions)
|
|
75.10.-b
|
(General theory and models of magnetic ordering)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11774350, 11534010 and 11574315. |
|
|
[1] | Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 | [2] | Geim A K and Grigorieva I V 2013 Nature 499 419 | [3] | Parkin S S P and Friend R H 1980 Philos. Mag. B 41 95 | [4] | Morosan E, Natelson D, Nevidomskyy A H and Qimiao Si 2012 Adv. Mater. 24 4896 | [5] | Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147 | [6] | Zhu Z Y, Cheng Y C and Schwingenschlgl U 2011 Phys. Rev. B 84 153402 | [7] | Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205 | [8] | Wilson J A and Yoffe A D 1969 Adv. Phys. 18 193 | [9] | Naito M and Tanaka S 1982 J. Phys. Soc. Jpn. 51 219 | [10] | Bayard M and Sienko M J 1976 J. Solid State Chem. 19 325 | [11] | Garoche P, Veyssi J J, Manuel P and Molini P 1976 Solid State Commun. 19 455 | [12] | Nagata S, Aochi T, Abe T, Ebisu S, Hagino T, Seki Y and Tsutsumi K 1992 J. Phys. Chem. Solids 53 1259 | [13] | Castro Neto A H 2001 Phys. Rev. Lett. 86 4382 | [14] | Morosan E, Zandbergen H W, Dennis B S, Bos J W G, Onose Y, Klimczuk T, Ramirez A P, Ong N P and Cava R J 2006 Nat. Phys. 2 544 | [15] | Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699 | [16] | Susarla S, Kochat V, Kutana A, Hachtel J A, Idrobo J C, Vajtai R, Yakobson B I, Tiwary C S and Ajayan P M 2017 Chem. Mater. 29 7431 | [17] | Friend R H A, Beal R and Yoffe A D 1977 Philos. Mag. B 35 1269 | [18] | Morosan E, Zandbergen H W, Li L, Lee M, Checkelsky L G, Heinrich M, Siegrist T, Ong N P and Cava R J 2007 Phys. Rev. B 75 104401 | [19] | Eibsshutz M, Mahajan S, DiSalvo F J, Hull G W and Waszczak J V 1981 J. Appl. Phys. 52 2098 | [20] | Dijkstra J, Zijlema P J, Van Bruggen C F, Haas C and de Groot R A 1989 J. Phys.: Condens. Matter 1 6363 | [21] | Narita H, Ikuta H, Hinode H, Uchida T, Ohtani T and Wakihara M 1994 J. Solid State Chem. 108 148 | [22] | Choe J, Lee K, Huang C L, Trivedi N and Morosan E 2019 Phys. Rev. B 99 064420 | [23] | Chen C W, Chikara S, Zapf V S and Morosan E 2016 Phys. Rev. B 94 054406 | [24] | Checkelsky J G, Lee M, Morosan E, Cava R J and Ong N P 2008 Phys. Rev. B 77 014433 | [25] | Ko K T, Kim K, Kim S B, Kim H D, Kim J Y, Min B I, Park J H, Chang F H, Lin H J, Tanaka A and Cheong S W 2011 Phys. Rev. Lett. 107 247201 | [26] | Hardy W J, Chen C W, Marcinkova A, Ji H, Sinova J, Natelson D and Morosan E 2015 Phys. Rev. B 91 054426 | [27] | Choi Y J, Kim S B, Asada T, Park S, Horibe Y and Cheong S W 2009 Europhys. Lett. 86 37012 | [28] | Loganathan V, Zhu J X and Nevidomskyy A H 2016 arXiv:1605.07141v1 | [29] | Wu G, Kang B L, Li Y L, Wu T, Wang N Z, Luo X G, Sun Z, Zou L J and Chen X H 2017 arXiv:1705.03139v1 | [30] | Mankovsky S, Chadova K, Kodderitzsch D, Minar J and Ebert H 2015 Phys. Rev. B 92 144413 | [31] | Zhu J X, Janoschek M, Rosenberg R, Ronning F and Thompson J D 2014 Phys. Rev. X 4 021027 | [32] | Doniach S and Sondheimer E H 1999 Green Functions for Solid State Physicists (Imperial College Press and London) | [33] | Schwabe N F, Elliott R J and Wingreen N S 1996 Phys. Rev. B 54 12953 | [34] | Chen D M and Zou L J 2007 Int. J. Mod. Phys. {B} 21 691 | [35] | Lanczos C 1950 J. Res. Natl. Bureau Stand. 45 2133 | [36] | Jaklic J and Prelovsek P 1993 Phys. Rev. B 47 6142 | [37] | Saad Y 1992 Numerical Methods for Large Eigenvalue Problems (New York: Halstead Press) | [38] | Avella A and Mancini F 2013 Strongly Correlated Systems Numerical Methods (Berlin: Springer-Verlag) | [39] | Komzsik L 2003 The Lanczos Method: Evolution and Application (Society for Industrial and Applied Mathematics) | [40] | Arbenz P, Kressner D and Zürich D M E 2012 Lecture Notes on Solving Large Scale Eigenvalue Problems (D-Math, Zürich ETH) | [41] | Irkhin V Y, Katanin A A and Katsnelson M I 1999 Phys. Rev. B 60 1082 | [42] | Yasuda C, Todo S, Hukushima K, Alet F, Keller M, Troyer M and Takayama H 2005 Phys. Rev. Lett. 94 217201 | [43] | Gibertini M, Koperski M, Morpurgo A F and Novoselov K S 2019 Nat. Nanotechnol. 14 408 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|