Chin. Phys. Lett.  2020, Vol. 37 Issue (1): 017102    DOI: 10.1088/0256-307X/37/1/017102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electronic Structures and Thermoelectric Properties of ZnSb Doped with Cd and In from First Principles Calculations
Kai Zhou**, Ting Zhang, Bin Liu, Yi-Jun Yao
School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044
Cite this article:   
Kai Zhou, Ting Zhang, Bin Liu et al  2020 Chin. Phys. Lett. 37 017102
Download: PDF(832KB)   PDF(mobile)(821KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Thermoelectric properties of pure, Cd- and In-doped ZnSb are studied by first principles calculations of electronic structures and the semi-classical Boltzmann transport theory. The doping of Cd or In at the Zn lattice site slightly increases the lattice parameters due to the larger atomic radii of Cd and In compared with that of Zn. Cd or In doping also apparently increases the interatomic distances between the dopant atoms and the surrounding atoms. The power factor of n-type ZnSb is much larger than that of p-type ZnSb, indicating that n-type ZnSb has better thermoelectric performance than p-type ZnSb. After the doping of Cd or In, the power factor reduces mainly due to the decrease of the electrical conductivity. The temperature dependences of the Seebeck coefficient and the power factor of pure, Cd- and In-doped ZnSb are related to carrier concentrations.
Received: 07 September 2019      Published: 23 December 2019
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  85.80.Fi (Thermoelectric devices)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11605091, and the Scientific Research Foundation of Nanjing University of Information Science and Technology under Grant No 2243141701009.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/1/017102       OR      https://cpl.iphy.ac.cn/Y2020/V37/I1/017102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kai Zhou
Ting Zhang
Bin Liu
Yi-Jun Yao
[1]Snyder G J, Christensen M, Nishibori E et al 2004 Nat. Mater. 3 458
[2]Iversen B B 2010 J. Mater. Chem. 20 10778
[3]Caillat T, Fleurial J P and Borshchevsky A 1997 J. Phys. Chem. Solids 58 1119
[4]Ahn J H, Oh M W, Kim B S et al 2011 Mater. Res. Bull. 46 1490
[5]Lin J, Li X, Qiao G et al 2014 J. Am. Chem. Soc. 136 1497
[6]Okamura C, Ueda T and Hasezaki K 2010 Mater. Trans. 51 860
[7]Pothin R, Ayral R M, Berche A et al 2016 Chem. Eng. J. 299 126
[8]Valset K, Böttger P H M, Taftø J et al 2012 J. Appl. Phys. 111 023703
[9]Xiong D B, Okamoto N L and Inui H 2013 Scr. Mater. 69 397
[10]Pedersen B L and Iversen B B 2008 Appl. Phys. Lett. 92 161907
[11]Mozharivskyj Y, Pecharsky A O, Bud'ko S et al 2004 Chem. Mater. 16 1580
[12]Stiewe C, Dasgupta T, Boettcher L et al 2010 J. Electron. Mater. 39 1975
[13]Yin H, Christensen M, Pedersen B L et al 2010 J. Electron. Mater. 39 1957
[14]Fedorov M I, Prokof'eva L V, Pshenay-Severin D A et al 2014 J. Electron. Mater. 43 2314
[15]Eklöf D, Fischer A, Wu Y et al 2013 J. Mater. Chem. A 1 1407
[16]Amsler M, Goedecker S, Zeier W G et al 2016 Chem. Mater. 28 2912
[17]Benson D, Sankey O F and Häussermann U 2011 Phys. Rev. B 84 125211
[18]Bjerg L, Madsen G K H and Iversen B B 2012 Chem. Mater. 24 2111
[19]Niedziółka K and Jund P 2015 J. Electron. Mater. 44 1540
[20]Gonze X, Amadon B, Anglade P M et al 2009 Comput. Phys. Commun. 180 2582
[21]Torrent M, Jollet F, Bottin F et al 2008 Comput. Mater. Sci. 42 337
[22]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[23]Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[24]Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768
[25]Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67
[26]Komiya H, Masumoto K and Fan H Y 1964 Phys. Rev. 133 A1679
[27]Jund P, Viennois R, Tao X et al 2012 Phys. Rev. B 85 224105
[28]Guo R, Wang X, Kuang Y et al 2015 Phys. Rev. B 92 115202
[29]Shaver P J and Blair J 1966 Phys. Rev. 141 649
[30]Valset K, Song X and Finstad T G 2015 J. Appl. Phys. 117 045709
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 017102
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 017102
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 017102
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 017102
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 017102
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 017102
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 017102
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 017102
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 017102
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 017102
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 017102
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 017102
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 017102
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 017102
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 017102
Viewed
Full text


Abstract