CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Electronic Structures and Thermoelectric Properties of ZnSb Doped with Cd and In from First Principles Calculations |
Kai Zhou**, Ting Zhang, Bin Liu, Yi-Jun Yao |
School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044
|
|
Cite this article: |
Kai Zhou, Ting Zhang, Bin Liu et al 2020 Chin. Phys. Lett. 37 017102 |
|
|
Abstract Thermoelectric properties of pure, Cd- and In-doped ZnSb are studied by first principles calculations of electronic structures and the semi-classical Boltzmann transport theory. The doping of Cd or In at the Zn lattice site slightly increases the lattice parameters due to the larger atomic radii of Cd and In compared with that of Zn. Cd or In doping also apparently increases the interatomic distances between the dopant atoms and the surrounding atoms. The power factor of n-type ZnSb is much larger than that of p-type ZnSb, indicating that n-type ZnSb has better thermoelectric performance than p-type ZnSb. After the doping of Cd or In, the power factor reduces mainly due to the decrease of the electrical conductivity. The temperature dependences of the Seebeck coefficient and the power factor of pure, Cd- and In-doped ZnSb are related to carrier concentrations.
|
|
Received: 07 September 2019
Published: 23 December 2019
|
|
PACS: |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
72.20.Pa
|
(Thermoelectric and thermomagnetic effects)
|
|
85.80.Fi
|
(Thermoelectric devices)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 11605091, and the Scientific Research Foundation of Nanjing University of Information Science and Technology under Grant No 2243141701009. |
|
|
[1] | Snyder G J, Christensen M, Nishibori E et al 2004 Nat. Mater. 3 458 | [2] | Iversen B B 2010 J. Mater. Chem. 20 10778 | [3] | Caillat T, Fleurial J P and Borshchevsky A 1997 J. Phys. Chem. Solids 58 1119 | [4] | Ahn J H, Oh M W, Kim B S et al 2011 Mater. Res. Bull. 46 1490 | [5] | Lin J, Li X, Qiao G et al 2014 J. Am. Chem. Soc. 136 1497 | [6] | Okamura C, Ueda T and Hasezaki K 2010 Mater. Trans. 51 860 | [7] | Pothin R, Ayral R M, Berche A et al 2016 Chem. Eng. J. 299 126 | [8] | Valset K, Böttger P H M, Taftø J et al 2012 J. Appl. Phys. 111 023703 | [9] | Xiong D B, Okamoto N L and Inui H 2013 Scr. Mater. 69 397 | [10] | Pedersen B L and Iversen B B 2008 Appl. Phys. Lett. 92 161907 | [11] | Mozharivskyj Y, Pecharsky A O, Bud'ko S et al 2004 Chem. Mater. 16 1580 | [12] | Stiewe C, Dasgupta T, Boettcher L et al 2010 J. Electron. Mater. 39 1975 | [13] | Yin H, Christensen M, Pedersen B L et al 2010 J. Electron. Mater. 39 1957 | [14] | Fedorov M I, Prokof'eva L V, Pshenay-Severin D A et al 2014 J. Electron. Mater. 43 2314 | [15] | Eklöf D, Fischer A, Wu Y et al 2013 J. Mater. Chem. A 1 1407 | [16] | Amsler M, Goedecker S, Zeier W G et al 2016 Chem. Mater. 28 2912 | [17] | Benson D, Sankey O F and Häussermann U 2011 Phys. Rev. B 84 125211 | [18] | Bjerg L, Madsen G K H and Iversen B B 2012 Chem. Mater. 24 2111 | [19] | Niedziółka K and Jund P 2015 J. Electron. Mater. 44 1540 | [20] | Gonze X, Amadon B, Anglade P M et al 2009 Comput. Phys. Commun. 180 2582 | [21] | Torrent M, Jollet F, Bottin F et al 2008 Comput. Mater. Sci. 42 337 | [22] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | [23] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 | [24] | Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768 | [25] | Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67 | [26] | Komiya H, Masumoto K and Fan H Y 1964 Phys. Rev. 133 A1679 | [27] | Jund P, Viennois R, Tao X et al 2012 Phys. Rev. B 85 224105 | [28] | Guo R, Wang X, Kuang Y et al 2015 Phys. Rev. B 92 115202 | [29] | Shaver P J and Blair J 1966 Phys. Rev. 141 649 | [30] | Valset K, Song X and Finstad T G 2015 J. Appl. Phys. 117 045709 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|