CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Negative Thermal Expansion and Spontaneous Magnetostriction of Nd$_{2}$Fe$_{16.5}$Cr$_{0.5}$ Compound |
Li-Yu HAO1, Tie Yang1**, Ming Tan2** |
1School of Physics Science and Technology, Southwest University, Chongqing 400715 2College of Science, Henan Agricultural University, Zhengzhou 450002
|
|
Cite this article: |
Li-Yu HAO, Tie Yang, Ming Tan 2020 Chin. Phys. Lett. 37 016501 |
|
|
Abstract The structural, thermal expansion, and magnetic properties of the Nd$_{2}$Fe$_{16.5}$Cr$_{0.5}$ compound are investigated by means of x-ray diffraction and magnetization measurements. The Nd$_{2}$Fe$_{16.5}$Cr$_{0.5}$ compound has a rhombohedral Th$_{2}$Zn$_{17}$-type structure. There exists a small negative thermal expansion resulting from a spontaneous magnetostriction in the magnetic state of the Nd$_{2}$Fe$_{16.5}$Cr$_{0.5}$ compound. The average thermal expansion coefficient is $-1.06\times 10^{-6}$/K in a temperature range 299–394 K. The spontaneous magnetostrictive deformation and the Curie temperature are discussed.
|
|
Received: 24 September 2019
Published: 23 December 2019
|
|
PACS: |
65.60.+a
|
(Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.)
|
|
75.80.+q
|
(Magnetomechanical effects, magnetostriction)
|
|
75.30.Et
|
(Exchange and superexchange interactions)
|
|
75.60.Ej
|
(Magnetization curves, hysteresis, Barkhausen and related effects)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 50871074 and 61474082, the Henan Agricultural University Start-up under Grant No 20190703Y00005. |
|
|
[1] | Mary T A, Evans J S O, Vogt T and Sleight A W 1996 Science 272 90 | [2] | Gȩbara P, Cesnek M and Bednarcik J 2019 Curr. Appl. Phys. 19 188 | [3] | Song Y Z, Chen J, Liu X Z, Wang C W, Zhang J, Liu H, Zhu H, Hu L, Lin K, Zhang S T and Xing X R 2018 J. Am. Chem. Soc. 140 602 | [4] | Wang H P, Zhao J F, Liu W and Wei B 2018 J. Appl. Phys. 124 215107 | [5] | Lagarec K and Rancourt D G 2000 Phys. Rev. B 62 978 | [6] | Hao Y M, Zhao M and Zhou Y 2005 J. Appl. Phys. 98 076101 | [7] | Hao Y M, Zhang X M, Wang B W, Yuan Y Z and Wang F 2010 J. Appl. Phys. 108 023915 | [8] | Hao Y M, Liang F F, Zhang X M, Wu Y Z, Qin H W and Hu J F 2011 IEEE Trans. Magn. 47 3614 | [9] | Hao Y M, Zhou Y and Zhao M 2005 J. Appl. Phys. 97 116102 | [10] | Hao Y M, Zhao M, Zhou Y and Hu J 2010 Chin. Phys. B 19 067502 DOI: 10.1088/1674-1056/19/6/067502 | [11] | Hao Y M, Zhao M, Zhou Y and Hu J 2006 Eur. Phys. J. Appl. Phys. 33 103 | [12] | Gao C, Hao Y, Liang F, Zhen K and Hu H 2012 J. Chin. Rare-Earth Soc. 30 699 (in Chinese) | [13] | Hao S Q, Chen N X and Shen J 2002 J. Magn. Magn. Mater. 246 115 | [14] | Hao Y M, Zhao M, Zhou Y and Hu J F 2005 Scr. Mater. 53 357 | [15] | Hao L Y, Yang T, Wang X T and Tan M 2019 Chin. Phys. Lett. 36 066501 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|