Chin. Phys. Lett.  2019, Vol. 36 Issue (9): 097501    DOI: 10.1088/0256-307X/36/9/097501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Machine Learning and Micromagnetic Studies of Magnetization Switching
Jing-Yue Miao1,2**
1Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084
2Argonne National Laboratory, Chicago, USA
Cite this article:   
Jing-Yue Miao 2019 Chin. Phys. Lett. 36 097501
Download: PDF(1286KB)   PDF(mobile)(1287KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Magnetization switching is one of the most fundamental topics in the field of magnetism. Machine learning (ML) models of random forest (RF), support vector machine (SVM), deep neural network (DNN) methods are built and trained to classify the magnetization reversal and non-reversal cases of single-domain particle, and the classification performances are evaluated by comparison with micromagnetic simulations. The results show that the ML models have achieved great accuracy and the DNN model reaches the best area under curve (AUC) of 0.997, even with a small training dataset, and RF and SVM models have lower AUCs of 0.964 and 0.836, respectively. This work validates the potential of ML applications in studies of magnetization switching and provides the benchmark for further ML studies in magnetization switching.
Received: 24 May 2019      Published: 23 August 2019
PACS:  75.78.Cd (Micromagnetic simulations ?)  
  75.60.Jk (Magnetization reversal mechanisms)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/9/097501       OR      https://cpl.iphy.ac.cn/Y2019/V36/I9/097501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jing-Yue Miao
[1]Wernsdorfer W et al 1997 Phys. Rev. Lett. 78 1791
[2]Fukushima H, Nakatani Y and Hayashi N 1998 IEEE Trans. Magn. 34 193
[3]Wei D 2012 Micromagnetics and Recording Materials (Heidelberg: Springer)
[4]Yuan S W and Bertram H N 1992 IEEE Trans. Magn. 28 2031
[5]Serpico C and Visone C 1998 IEEE Trans. Magn. 34 623
[6]Alam M, Ali A, Sultan M S et al 2018 Prog. Electromagn. Res. Symp. (Toyama Jpn. 1–4 August 2018) p 291
[7]Ch'ng K, Vazquez N and Khatami E 2018 Phys. Rev. E 97 013306
[8]Carrasquilla J and Melko R G 2017 Nat. Phys. 13 431
[9]Roy U, Pramanik T, Roy S et al 2017 75th Annual Device Research Conference (South Bend, USA 25–28 June 2017)
[10]Tannous C and Gieraltowski J 2008 Eur. J. Phys. 29 475
[11]Gao K Z, Boerner E D and Bertram H N 2003 J. Appl. Phys. 93 6549
[12]Russell S J and Norvig P 2010 Artificial Intelligence: A Modern Approach 3rd edn (Malaysia: Pearson)
[13]Liaw A and Wiener M 2002 R. News 2 18
[14]Suykens J A K and Vandewalle J 1999 Neural Process. Lett. 9 293
[15]Haykin S 1994 Neural networks (New York: Prentice Hall)
[16]Pedregosa F, Varoquaux G, Gramfort A et al 2011 J. Mach. Learn. Res. 12 2825
[17]Abadi M, Barham P, Chen J et al 12th USENIX Symposium on Operating Systems Design, Implementation (Savannah and USA 2–4 November 2016) 16 265
[18]Huang J and Ling C X 2005 IEEE Trans. Knowl. Data Eng. 17 299
Related articles from Frontiers Journals
[1] Zhiwen Wang, Jinghua Liang, and Hongxin Yang. Strain-Enabled Control of Chiral Magnetic Structures in MnSeTe Monolayer[J]. Chin. Phys. Lett., 2023, 40(1): 097501
[2] Jiahao Liu, Zidong Wang, Teng Xu, Hengan Zhou, Le Zhao, Soong-Guen Je, Mi-Young Im, Liang Fang, and Wanjun Jiang. The 20-nm Skyrmion Generated at Room Temperature by Spin-Orbit Torques[J]. Chin. Phys. Lett., 2022, 39(1): 097501
[3] Xiao-Ping Ma, Hongguo Yang, Changfeng Li, Cheng Song, and Hong-Guang Piao. Nanocavity-Mediated Fast Magnetic Vortex Core In-Situ Switching by Local Magnetic Field[J]. Chin. Phys. Lett., 2021, 38(12): 097501
[4] Qingwei Fu, Yong Li, Lina Chen, Fusheng Ma, Haotian Li, Yongbing Xu, Bo Liu, Ronghua Liu, and Youwei Du. Mode Structures and Damping of Quantized Spin Waves in Ferromagnetic Nanowires[J]. Chin. Phys. Lett., 2020, 37(8): 097501
[5] Guang-Tian Hai, Wen-Xiu Zhao, Jia-Shu Chen, Zheng-Hua Li, Jia-Liang He. Magnetoresistance Detection of Vortex Domain in a Notched FeNi Nanowire[J]. Chin. Phys. Lett., 2018, 35(7): 097501
[6] Jiang-Nan Li, Dan Wei,. Periodic Boundary Conditions for Finite-Differentiation-Method Fast-Fourier-Transform Micromagnetics[J]. Chin. Phys. Lett., 2017, 34(4): 097501
[7] Long-Ze Wang, Jiang-Nan Li, Jun-Jie Song, Chuan Liu, Dan Wei. Simulation of $M$–$H$ Loops in FeCo Polycrystalline Thin Films at Finite Temperatures[J]. Chin. Phys. Lett., 2017, 34(4): 097501
[8] Long-Ze Wang, Jing-Yue Miao, Zhen Zhao, Chuan Liu, Dan Wei. Micromagnetic Studies of Finite Temperature $M$–$H$ Loops for FePt-C Media[J]. Chin. Phys. Lett., 2017, 34(2): 097501
[9] LI Yi, XU Ben, HU Shen-Yang, LI Yu-Lan, LI Qiu-Lin, LIU Wei. Magnetization Reversal Process of Single Crystal α-Fe Containing a Nonmagnetic Particle[J]. Chin. Phys. Lett., 2015, 32(06): 097501
[10] CHENG Zhi-Da, ZHU Jing, **, TANG Zheng . Noncollinear Magnetism Calculation of Iron Clusters with Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2011, 28(3): 097501
Viewed
Full text


Abstract