CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Superconducting Single-Layer T-Graphene and Novel Synthesis Routes |
Qinyan Gu, Dingyu Xing, Jian Sun** |
National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093
|
|
Cite this article: |
Qinyan Gu, Dingyu Xing, Jian Sun 2019 Chin. Phys. Lett. 36 097401 |
|
|
Abstract Single-layer superconductors are ideal materials for fabricating superconducting nano devices. However, up to date, very few single-layer elemental superconductors have been predicted and especially no one has been successfully synthesized yet. Here, using crystal structure search techniques and ab initio calculations, we predict that a single-layer planar carbon sheet with 4- and 8-membered rings called T-graphene is a new intrinsic elemental superconductor with superconducting critical temperature ($T_{\rm c}$) up to around 20.8 K. More importantly, we propose a synthesis route to obtain such a single-layer T-graphene, that is, a T-graphene potassium intercalation compound (C$_4$K with $P4/mmm$ symmetry) is firstly synthesized at high pressure ($>$11.5 GPa) and then quenched to ambient condition; and finally, the single-layer T-graphene can be either exfoliated using the electrochemical method from the bulk C$_4$K, or peeled off from bulk T-graphite C$_4$, where C$_4$ can be obtained from C$_4$K by evaporating the K atoms. Interestingly, we find that the calculated $T_{\rm c}$ of C$_4$K is about 30.4 K at 0 GPa, which sets a new record for layered carbon-based superconductors. The present findings add a new class of carbon-based superconductors. In particular, once the single-layer T-graphene is synthesized, it can pave the way for fabricating superconducting devices together with other 2D materials using the layer-by-layer growth techniques.
|
|
Received: 31 July 2019
Published: 03 August 2019
|
|
PACS: |
74.62.Bf
|
(Effects of material synthesis, crystal structure, and chemical composition)
|
|
74.62.Fj
|
(Effects of pressure)
|
|
74.70.Wz
|
(Carbon-based superconductors)
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFA0300404, the National Basic Research Program of China under Grant No 2015CB921202, the National Nature Science Foundation of China under Grant Nos 11574133 and 11834006, the Nature Science Foundation of Jiangsu Province under Grant No BK20150012, the Fundamental Research Funds for the Central Universities, the Science Challenge Project (No TZ2016001). |
|
|
[1] | Saito Y, Nojima T and Iwasa Y 2017 Nat. Rev. Mater. 2 16094 | [2] | Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402 | [3] | Lu J M, Zheliuk O, Leermakers I, Yuan N F Q, Zeitler U, Law K T and Ye J T 2015 Science 350 1353 | [4] | Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J and Mak K F 2016 Nat. Phys. 12 139 | [5] | Si C, Liu Z, Duan W and Liu F 2013 Phys. Rev. Lett. 111 196802 | [6] | Ludbrook B M, Levy G, Nigge P, Zonno M, Schneider M, Dvorak D J, Veenstra C N, Zhdanovich S, Wong D, Dosanjh P 2015 Proc. Natl. Acad. Sci. USA 112 11795 | [7] | Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 | [8] | Penev E S, Kutana A and Yakobson B I 2016 Nano Lett. 16 2522 | [9] | Zhao Y, Zeng S and Ni J 2016 Phys. Rev. B 93 014502 | [10] | Kroto H W, Heath J R, O'Brien S C, Curl R F and Smalley R E 1985 Nature 318 162 | [11] | Iijima S 1991 Nature 354 56 | [12] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 | [13] | Li Q, Ma Y, Oganov A R, Wang H, Wang H, Xu Y, Cui T, Mao H K and Zou G 2009 Phys. Rev. Lett. 102 175506 | [14] | Zhou X F, Qian G R, Dong X, Zhang L, Tian Y and Wang H T 2010 Phys. Rev. B 82 134126 | [15] | Li Y, Xu L, Liu H and Li Y 2014 Chem. Soc. Rev. 43 2572 | [16] | Huang Q, Yu D, Xu B, Hu W, Ma Y, Wang Y, Zhao Z, Wen B, He J, Liu Z 2014 Nature 510 250 | [17] | Zhang S, Zhou J, Wang Q, Chen X, Kawazoe Y and Jena P 2015 Proc. Natl. Acad. Sci. USA 112 2372 | [18] | Yang X, Yao M, Wu X, Liu S, Chen S, Yang K, Liu R, Cui T, Sundqvist B and Liu B 2017 Phys. Rev. Lett. 118 245701 | [19] | Terrones H, Terrones M, Hernández E, Grobert N, Charlier J C and Ajayan P M 2000 Phys. Rev. Lett. 84 1716 | [20] | Liu Y, Wang G, Huang Q, Guo L and Chen X 2012 Phys. Rev. Lett. 108 225505 | [21] | Majidi R 2017 Theor. Chem. Acc. 136 109 | [22] | Sheng X L, Cui H J, Ye F, Yan Q B, Zheng Q R and Su G 2012 J. Appl. Phys. 112 074315 | [23] | Hannay N B, Geballe T H, Matthias B T, Andres K, Schmidt P and MacNair D 1965 Phys. Rev. Lett. 14 225 | [24] | Ganin A Y, Takabayashi Y, Jeglic P, Arcon D, Potocnik A, Baker P J, Ohishi Y, McDonald M T, Tzirakis M D, McLennan A 2010 Nature 466 221 | [25] | Tang Z K, Zhang L, Wang N, Zhang X X, Wen G H, Li G D, Wang J N, Chan C T and Sheng P 2001 Science 292 2462 | [26] | Ekimov E A, Sidorov V A, Bauer E D, Mel'nik N N, Curro N J, Thompson J D and Stishov S M 2004 Nature 428 542 | [27] | Xia K, Ma M, Liu C, Gao H, Chen Q, He J, Sun J, Wang H T, Tian Y and Xing D 2017 Mater. Today Phys. 3 76 | [28] | Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature 410 63 | [29] | Grüneis A, Attaccalite C, Rubio A, Vyalikh D V, Molodtsov S L, Fink J, Follath R, Eberhardt W, Büchner B and Pichler T 2009 Phys. Rev. B 79 205106 | [30] | Pan Z H, Camacho J, Upton M H, Fedorov A V, Howard C A, Ellerby M and Valla T 2011 Phys. Rev. Lett. 106 187002 | [31] | Smith R P, Kusmartseva A, Ko Y T C, Saxena S S, Akrap A, Forró L, Laad M, Weller T E, Ellerby M and Skipper N T 2006 Phys. Rev. B 74 024505 | [32] | Weller T E, Ellerby M, Saxena S S, Smith R P and Skipper N T 2005 Nat. Phys. 1 39 | [33] | Emery N, Hérold C, d'Astuto M, Garcia V, Bellin C, Marêché J F, Lagrange P and Loupias G 2005 Phys. Rev. Lett. 95 087003 | [34] | Gauzzi A, Takashima S, Takeshita N, Terakura C, Takagi H, Emery N, Hérold C, Lagrange P and Loupias G 2007 Phys. Rev. Lett. 98 067002 | [35] | Profeta G, Calandra M and Mauri F 2012 Nat. Phys. 8 131 | [36] | Xue M, Chen G, Yang H, Zhu Y, Wang D, He J and Cao T 2012 J. Am. Chem. Soc. 134 6536 | [37] | Chapman J, Su Y, Howard C A, Kundys D, Grigorenko A N, Guinea F, Geim A K, Grigorieva I V and Nair R R 2016 Sci. Rep. 6 23254 | [38] | Zhang W, Oganov A R, Goncharov A F, Zhu Q, Boulfelfel S E, Lyakhov A O, Stavrou E, Somayazulu M, Prakapenka V B and Konôpková Z 2013 Science 342 1502 | [39] | Zhang L, Wang Y, Lv J and Ma Y 2017 Nat. Rev. Mater. 2 17005 | [40] | Klimeš J, Bowler D R and Michaelides A 2010 J. Phys.: Condens. Matter 22 022201 | [41] | Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131 | [42] | Xia K, Gao H, Liu C, Yuan J, Sun J, Wang H T and Xing D 2018 Sci. Bull. 63 817 | [43] | Salamat A, Fischer R A, Briggs R, McMahon M I and Petitgirard S 2014 Coord. Chem. Rev. 277 15 | [44] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 | [45] | Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033 | [46] | Kim D Y, Stefanoski S, Kurakevych O O and Strobel T A 2015 Nat. Mater. 14 169 | [47] | Zacharia R, Ulbricht H and Hertel T 2004 Phys. Rev. B 69 155406 | [48] | Ziambaras E, Kleis J, Schröder E and Hyldgaard P 2007 Phys. Rev. B 76 155425 | [49] | Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G 2018 Nat. Nanotechnol. 13 246 | [50] | Lee J W, Kim M, Na W, Hong S M and Koo C M 2015 Carbon 91 527 | [51] | Bharath G, Alhseinat E, Ponpandian N, Khan M A, Siddiqui M R, Ahmed F and Alsharaeh E H 2017 Sep. Purif. Technol. 188 206 | [52] | Tan R K L, Reeves S P, Hashemi N, Thomas D G, Kavak E, Montazami R and Hashemi N N 2017 J. Mater. Chem. A 5 17777 | [53] | Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473 | [54] | Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H and Aoki H 2008 Phys. Rev. Lett. 101 087004 | [55] | Allen P B and Dynes R C 1975 Phys. Rev. B 12 905 | [56] | He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z 2013 Nat. Mater. 12 605 | [57] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 | [58] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | [59] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 | [60] | Grimme S 2006 J. Comput. Chem. 27 1787 | [61] | Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 | [62] | Dion M, Rydberg H, Schröder E, Langreth D C and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401 | [63] | érez P and Soler J M 2009 Phys. Rev. Lett. 103 096102 | [64] | Lee K, Murray E D, Kong L, Lundqvist B I and Langreth D C 2010 Phys. Rev. B 82 081101 | [65] | Hoover W G 1985 Phys. Rev. A 31 1695 | [66] | Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I 2009 J. Phys.: Condens. Matter 21 395502 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|