CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Magnetic and Magnetocaloric Properties of Polycrystalline and Oriented Mn$_{2-\delta}$Sn |
Kun Li1,2, Fanggui Wang1,2, Youfang Lai1,2, Mingzhu Xue1,2, Xin Li1,2, Jinbo Yang1,2,3, Changsheng Wang1,2, Jingzhi Han1,2, Shunquan Liu1,2, Wenyun Yang1,2, Yingchang Yang1,2, Honglin Du1,2** |
1School of Physics, Peking University, Beijing 100871 2Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing 100871 3Collaborative Innovation Center of Quantum Matter, Beijing 100871
|
|
Cite this article: |
Kun Li, Fanggui Wang, Youfang Lai et al 2019 Chin. Phys. Lett. 36 097502 |
|
|
Abstract Mn-based Heusler alloys have attracted significant research attention as half-metallic materials because of their giant magnetocrystalline anisotropy and magnetocaloric properties. We investigate the crystal structure and magnetic properties of polycrystalline, [101]-oriented, and [100]-oriented Mn$_{2-\delta}$Sn prepared separately by arc melting, the Bridgeman method, and the flux method. All of these compounds crystallize in a Ni$_{2}$In-type structure. In the Mn$_{2-\delta}$Sn lattice, Mn atoms occupy all of the 2$a$ and a fraction of the 2$d$ sites. Site disorder exists between Mn and Sn atoms in the 2$c$ sites. In addition, these compounds undergo a re-entrant spin-glass-like transition at low temperatures, which is caused by frustration and randomness within the spin system. The magnetic properties of these systems depend on the crystal directions, which means that the magnetic interactions differ significantly along different directions. Furthermore, these materials exhibit a giant magnetocaloric effect near the Curie temperature. The largest value of maximum of magnetic entropy change ($-\Delta S_{\rm M})$ occurs perpendicular to the [100] direction. Specifically, at 252 K, maximum $-\Delta S_{\rm M}$ is 2.91 and 3.64 J$\cdot$kg$^{-1}$K$^{-1}$ for a magnetic field of 5 and 7 T, respectively. The working temperature span over 80 K and the relative cooling power reaches 302 J/kg for a magnetic field of 7 T, which makes the Mn$_{2-\delta}$Sn compound a promising candidate for a magnetic refrigerator.
|
|
Received: 05 May 2019
Published: 23 August 2019
|
|
PACS: |
75.30.Gw
|
(Magnetic anisotropy)
|
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11675006, 51731001 and 11805006, and the National Key Research and Development Program of China under Grant Nos 2017YFA0206303, 2016YFB0700901 and 2017YFA0403701. |
|
|
[1] | Groot R A D, Mueller F M, Engen P G V and Buschow K H J 1983 Phys. Rev. Lett. 50 2024 | [2] | Zutic I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323 | [3] | Felser C, Fecher G and Balke B 2007 Angew. Chen. Int. Ed. 46 668 | [4] | Fujii S, Ishida S and Asano S 2010 J. Phys. Soc. Jpn. 79 124702 | [5] | Yang C K, Zhao J J and Lu J P 2004 Nano Lett. 4 561 | [6] | Osipov V V, Petukhov A G and Smelyanskiy V N 2005 Appl. Phys. Lett. 87 202112 | [7] | Wang X T, Cheng Z X, Wang J L et al 2016 J. Mater. Chem. C 36 8535 | [8] | Luo H Z, Liu G D, Meng F B et al 2011 Physica B 406 4245 | [9] | Webster P J 1969 Contemp. Phys. 10 559 | [10] | Kubler J, Williams A R and Sommers C B 1983 Phys. Rev. B 28 1745 | [11] | Shaughnessy M, Fong C Y, Yang L H et al 2013 J. Appl. Phys. 113 043709 | [12] | Alijani V, Meshcheriakova O, Winterlik J et al 2013 J. Appl. Phys. 113 063904 | [13] | Kreiner G, Kalache A, Hausdorf S et al 2014 Z. Anorg. Allg. Chem. 640 738 | [14] | Fuglsby R, Kharel P, Zhang W et al 2015 J. Appl. Phys. 117 17D115 | [15] | Graf T, Felser C and Parkin S S P 2011 Prog. Solid State Chem. 39 1 | [16] | Winterlik J, Chadov S, Gupta A et al 2012 Adv. Mater. 24 6283 | [17] | Aprea C, Greco A, Maiorino A et al 2015 J. Phys.: Conf. Ser. 655 01206 | [18] | Almanza M, Kedous-Lebouc A, Yonnet J P et al 2015 Eur. Phys. J-Appl. Phys. 71 10903 | [19] | Silva D J, Bordalo B D, Puga J et al 2016 Appl. Therm. Eng. 99 514 | [20] | Franco V, Blázquez J S, Ipus J J et al 2018 Prog. Mater. Sci. 93 112 | [21] | Buschow K H J, van Engen P G and Jongebreur R 1983 J. Magn. Magn. Mater. 38 1 | [22] | Vasilev E A and Gelyasin A E 1978 Phys. Status Solidi 47 K55 | [23] | Howotny H and Schubert K 1946 Z. Metallkd. 37 17 | [24] | Kaplienko A I, Leonov B N and Chekin V V 1969 Solid State Phys. 11 3030 | [25] | Satya M N S, Begum R J, Srinivasan B S et al 1965 Phys. Lett. 15 223 | [26] | Shiraishi H, Hori T, Ohkubo N et al 2010 Phys. Status Solidi 1 3660 | [27] | Yasukōchi K, Kanematsu K and Ohoyama T 1961 J. Phys. Soc. Jpn. 16 1123 | [28] | Xu J H, Xia Y H, Yang W Y et al 2013 J. Appl. Phys. 113 17E111 | [29] | Griffith G, Volkening F A and Claus H 1985 J. Appl. Phys. 57 3392 | [30] | Dho J, Kim W S and Hur N H 2002 Phys. Rev. Lett. 89 027202 | [31] | Hagiwara N, Matoba M, Fujii S et al 1993 Phys. Status Solidi B 176 K71 | [32] | Isogai Y, Kobayashi T, Yoshida T et al 1997 Phys. Status Solidi 203 213 | [33] | Gschneidner K A and Jr. Pecharsky V K 2000 Annu. Rev. Mater. Res. 30 387 | [34] | Xu J H, Yang W Y, Du Q H et al 2014 J. Phys. D 47 065003 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|