CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Formation of Two-Dimensional AgTe Monolayer Atomic Crystal on Ag(111) Substrate |
Li Dong1,2, Aiwei Wang1,2, En Li1,2, Qin Wang1,2, Geng Li1,2**, Qing Huan1,2, Hong-Jun Gao1,2** |
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100190 |
|
Cite this article: |
Li Dong, Aiwei Wang, En Li et al 2019 Chin. Phys. Lett. 36 028102 |
|
|
Abstract We report on the formation of two-dimensional monolayer AgTe crystal on Ag(111) substrates. The samples are prepared in ultrahigh vacuum by deposition of Te on Ag(111) followed by annealing. Using a scanning tunneling microscope (STM) and low electron energy diffraction (LEED), we investigate the atomic structure of the samples. The STM images and the LEED pattern show that monolayer AgTe crystal is formed on Ag(111). Four kinds of atomic structures of AgTe and Ag(111) are observed: (i) flat honeycomb structure, (ii) bulked honeycomb, (iii) stripe structure, (iv) hexagonal structure. The structural analysis indicates that the formation of the different atomic structures is due to the lattice mismatch and relief of the intrinsic strain in the AgTe layer. Our results provide a simple and convenient method to produce monolayer AgTe atomic crystal on Ag(111) and a template for study of novel physical properties and for future quantum devices.
|
|
Received: 15 January 2019
Published: 18 January 2019
|
|
PACS: |
81.05.Zx
|
(New materials: theory, design, and fabrication)
|
|
68.37.-d
|
(Microscopy of surfaces, interfaces, and thin films)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
81.15.Ef
|
|
|
|
|
|
[1] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 | [2] | Novoselov K S, Mishchenko A, Carvalho A and Neto A H C 2016 Science 353 aac9439 | [3] | Pan Y, Zhang L Z, Huang L, Li L F, Meng L, Gao M, Huan Q, Lin X, Wang Y L, Du S X, Freund H J and Gao H J 2014 Small 10 2215 | [4] | Zhang G Y, Du S X, Wu K H and Gao H J 2018 Science 360 673 | [5] | Li G, Zhang Y Y, Guo H, Huang L, Lu H L, Lin X, Wang Y L, Du S X and Gao H J 2018 Chem. Soc. Rev. 47 6073 | [6] | Zhang S L, Guo S Y, Chen Z F, Wang Y L, Gao H J, Gomez-Herrero J, Ares P, Zamora F, Zhu Z and Zeng H B 2018 Chem. Soc. Rev. 47 982 | [7] | Pan Y, Shi D X and Gao H J 2007 Chin. Phys. 16 3151 | [8] | Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F and Gao H J 2009 Adv. Mater. 21 2777 | [9] | Huang L, Xu W Y, Que Y D, Mao J H, Meng L, Pan L D, Li G, Wang Y L, Du S X, Liu Y Q and Gao H J 2013 Chin. Phys. B 22 096803 | [10] | Meng L, Wang Y L, Zhang L Z, Du S X, Wu R T, Li L F, Zhang Y, Li G, Zhou H T, Hofer W A and Gao H J 2013 Nano Lett. 13 685 | [11] | Huang L, Zhang Y F, Zhang Y Y, Xu W Y, Que Y D, Li E, Pan J B, Wang Y L, Liu Y Q, Du S X, Pantelides S T and Gao H J 2017 Nano Lett. 17 1161 | [12] | Li G, Zhang L Z, Xu W Y, Pan J B, Song S R, Zhang Y, Zhou H T, Wang Y L, Bao L H, Zhang Y Y, Du S X, Ouyang M, Pantelides S T and Gao H J 2018 Adv. Mater. 30 1804650 | [13] | Li L F, Lu S Z, Pan J B, Qin Z H, Wang Y Q, Wang Y L, Cao G Y, Du S X and Gao H J 2014 Adv. Mater. 26 4820 | [14] | Wu X, Shao Y, Liu H, Feng Z, Wang Y L, Sun J T, Liu C, Wang J O, Liu Z L, Zhu S Y, Wang Y Q, Du S X, Shi Y G, Ibrahim K and Gao H J 2017 Adv. Mater. 29 1605407 | [15] | Shao Y, Liu Z L, Cheng C, Wu X, Liu H, Liu C, Wang J O, Zhu S Y, Wang Y Q, Shi D X, Ibrahim K, Sun J T, Wang Y L and Gao H J 2018 Nano Lett. 18 2133 | [16] | Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020 | [17] | Zhang Z H, Penev E S and Yakobson B I 2017 Chem. Soc. Rev. 46 6746 | [18] | Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699 | [19] | Fatemi V, Wu S F, Cao Y, Bretheau L, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 362 926 | [20] | Lin X, Lu J C, Shao Y, Zhang Y Y, Wu X, Pan J B, Gao L, Zhu S Y, Qian K, Zhang Y F, Bao D L, Li L F, Wang Y Q, Liu Z L, Sun J T, Lei T, Liu C, Wang J O, Ibrahim K, Leonard D N, Zhou W, Guo H M, Wang Y L, Du S X, Pantelides S T and Gao H J 2017 Nat. Mater. 16 717 | [21] | Gao L, Sun J T, Lu J C, Li H, Qian K, Zhang S, Zhang Y Y, Qian T, Ding H, Lin X, Du S and Gao H J 2018 Adv. Mater. 30 1707055 | [22] | Anasori B, Lukatskaya M R and Gogotsi Y 2017 Nat. Rev. Mater. 2 16098 | [23] | Wang Y, Xiao J, Zhu H Y, Li Y, Alsaid Y, Fong K Y, Zhou Y, Wang S Q, Shi W, Wang Y, Zettl A, Reed E J and Zhang X 2017 Nature 550 487 | [24] | Zhang Y C and Stucky G D 2014 Chem. Mater. 26 837 | [25] | van Veggel F C J M 2014 Chem. Mater. 26 111 | [26] | Zhang W, Yu R, Feng W X, Yao Y G, Weng H M, Dai X and Fang Z 2011 Phys. Rev. Lett. 106 156808 | [27] | Ma Y D, Kou L Z, Dai Y and Heine T 2016 Phys. Rev. B 93 235451 | [28] | Zhang Y H, Li Y, Ma Y M, Li Y W, Li G H, Shao X C, Wang H, Cui T, Wang X and Zhu P W 2015 Sci. Rep. 5 14681 | [29] | Sáfrán G, Geszti O, Radnóczi G 2003 Vacuum 71 299 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|