CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Structural Variation and Its Influence on the $1/f$ Noise of a-Si$_{1-x}$Ru$_{x}$ Thin Films Embedded with Nanocrystals |
Chong Wang1, Hao Zhong1, Eddy Simoen2, Xiang-Dong Jiang3, Ya-Dong Jiang1, Wei Li1** |
1State Key Lab of Electronic Thin Films & Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 2IMEC, Kapeldreef 75, Leuven B-3001, Belgium 3School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054
|
|
Cite this article: |
Chong Wang, Hao Zhong, Eddy Simoen et al 2019 Chin. Phys. Lett. 36 028101 |
|
|
Abstract The structural variation and its influence on the $1/f$ noise of a-Si$_{1-x}$Ru$_{x}$ thin films are investigated by Raman spectroscopy, transmission electron microscopy, and low frequency noise measurement. The Ru atoms are introduced into the amorphous silicon thin films by rf magnetron co-sputtering. Ru$_{2}$Si nanocrystals are found in the as-deposited samples. It is shown that the $1/f$ noise of the films can be reduced by a slight doping with Ru atoms. Moreover, both the microstructure and the $1/f$ noise performance of a-Si$_{1-x}$Ru$_{x}$ thin films could be improved through a high-temperature annealing treatment.
|
|
Received: 05 July 2018
Published: 22 January 2019
|
|
PACS: |
81.05.Gc
|
(Amorphous semiconductors)
|
|
68.55.jm
|
(Texture)
|
|
68.37.-d
|
(Microscopy of surfaces, interfaces, and thin films)
|
|
73.61.-r
|
(Electrical properties of specific thin films)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 61421002, and the China Scholarship Council under Grant No 201506070075. |
|
|
[1] | Gudiksen M S, Lauhon L J, Wang J, Smith D C and Lieber C M 2002 Nature 415 617 | [2] | Yang P, Yan R and Fardy M 2010 Nano Lett. 10 1529 | [3] | Hooge F N 1994 IEEE Trans. Electron Devices 41 1926 | [4] | Tanaka T, Sano E, Imai M and Akiyama K 2010 Jpn. J. Appl. Phys. 49 055101 | [5] | Fung T C, Baek G and Kanicki J 2010 J. Appl. Phys. 108 074518 | [6] | Dimitriadis C A, Kamarinos G and Brini J 2001 IEEE Electron Device Lett. 22 381 | [7] | Doria R T, Trevisoli R D, Souza M and Pavanello M A 2013 Microelectron. Eng. 109 79 | [8] | Lopes V C, Syllaios A J, Whitfield D, Shrestha K and Littler C L 2015 Mater. Res. Soc. Symp. Proc. 1770 25 | [9] | Lopes V C, Syllaios A J and Littler C L 2017 J. Non-Cryst. Solids 459 176 | [10] | Castilho J H, Chambouleyron I, Marques F C, Rettori C and Alvarez F 1991 Phys. Rev. B 43 8946 | [11] | Kumeda M, Jinno Y, Watanabe I and Shimizu T 1977 Solid State Commun. 23 833 | [12] | Castilho J H, Marques F C, Barberis G E, Rettori C, Alvarez F and Chambouleyron I 1989 Phys. Rev. B 39 2860 | [13] | Kuksenkov D V, Temkin H, Osinsky A, Gaska R and Khan M A 1998 Appl. Phys. Lett. 72 1365 | [14] | Li S, Jiang Y, Wu Z, Wu J, Ying Z, Wang Z, Li W and Salamo G 2011 Nanoscale Res. Lett. 6 281 | [15] | Guo A, Li W, Jiang X, Wang C, Lu M and Jiang Y 2015 Mater. Lett. 143 80 | [16] | He J, Li W, Xu R, Guo A, Wang Y and Jiang Y 2013 J. Phys. D 46 475107 | [17] | Guo A, Li W, Jiang X, Wang C and Jiang Y 2015 J. Raman Spectrosc. 46 619 | [18] | DeFelice L J 1976 J. Appl. Phys. 47 350 | [19] | Li S B, Wu Z M, Jiang Y D, Li W, Liao N M and Yu J S 2008 Nanotechnology 19 085706 | [20] | Marinov M and Zotov N 1997 Phys. Rev. B 55 2938 | [21] | Vandamme L K J and Hooge F N 2008 IEEE Trans. Electron Devices 55 3070 | [22] | Vandamme L K J, Li X and Rigaud D 1994 IEEE Trans. Electron Devices 41 1936 | [23] | Rhayem J, Rigaud D, Valenza M, Szydlo N and Lebrun H 2000 J. Appl. Phys. 87 1983 | [24] | Necliudov P V, Rumyantsev S L, Shur M S, Gundlach D J and Jackson T N 2000 J. Appl. Phys. 88 5395 | [25] | Lukyanchikova B N, Petrichuk M V, Garbar N, Simoen E, Poyai A and Claeys C 2000 IEEE Electron Device Lett. 21 408 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|