Chin. Phys. Lett.  2018, Vol. 35 Issue (9): 097102    DOI: 10.1088/0256-307X/35/9/097102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electronic Phase Transition of IrTe$_{2}$ Probed by Second Harmonic Generation
J. E. Taylor1, Z. Zhang1, G. Cao1, L. H. Haber2, R. Jin1, E. W. Plummer1**
1Department of Physics & Astronomy, Louisiana State University, LA 70803, USA
2Department of Chemistry, Louisiana State University, LA 70803, USA
Cite this article:   
J. E. Taylor, Z. Zhang, G. Cao et al  2018 Chin. Phys. Lett. 35 097102
Download: PDF(2785KB)   PDF(mobile)(2767KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We have utilized second harmonic generation (SHG) to disentangle the coupled first-order charge order/structural transition at $T_{\rm c}\sim281$ K in the transition-metal dichalocogenide IrTe$_{2}$, an exceptional layered material with 3D properties. The data from SHG shows extremely sharp transition in both the cooling and warming processes with less than 0.2 K transition window. Surface electronic symmetries of $C_{3v}$ and $S_{2}$ are observed in the high temperature and low temperature phases, respectively. Compared to neutron diffraction data for the structural transition (Phys. Rev. B 88 (2013) 115122) and to the electrical resistivity for the microscopic transition (Phys. Rev. B 95 (2017) 035148), our data indicates the electronic transition at the surface is the precursor to the structural transition.
Received: 28 August 2018      Published: 31 August 2018
PACS:  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  73.20.-r (Electron states at surfaces and interfaces)  
  71.20.Be (Transition metals and alloys)  
  78.68.+m (Optical properties of surfaces)  
  71.45.Lr (Charge-density-wave systems)  
Fund: Supported by the National Science Foundation under Grant No DMR-1504226.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/9/097102       OR      https://cpl.iphy.ac.cn/Y2018/V35/I9/097102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
J. E. Taylor
Z. Zhang
G. Cao
L. H. Haber
R. Jin
E. W. Plummer
[1]Coleman R V et al 1988 Adv. Phys. 37 559
[2]Wilson J A, Di Salvo F J and Mahajan S 1975 Adv. Phys. 24 117
[3]Yang J J et al 2012 Phys. Rev. Lett. 108 116402
[4]Li B, Huang G, Sun J and Xing Z 2015 Sci. Rep. 4 6433
[5]Pyon S, Kudo K and Nohara M 2012 J. Phys. Soc. Jpn. 81 053701
[6]Ma Y et al 2015 Phys. Rev. B 92 085427
[7]Manzeli S et al 2017 Nat. Rev. Mater. 2 17033
[8]Choi W et al 2017 Mater. Today 20 116
[9]Wang Q H et al 2012 Nat. Nanotechnol. 7 699
[10]Cao H et al 2013 Phys. Rev. B 88 115122
[11]Cao G et al 2017 Phys. Rev. B 95 035148
[12]Pascut G L et al 2014 Phys. Rev. Lett. 112 086402
[13]Peierls R E 1955 Quantum Theory of Solids (London: Oxford University Press)
[14]Ootsuki D et al 2012 Phys. Rev. B 86 014519
[15]Fang A F et al 2013 Sci. Rep. 3 1153
[16]Oh Y S, Yang J J, Horibe Y and Cheong S W 2013 Phys. Rev. Lett. 110 127209
[17]Joseph B et al 2013 Phys. Rev. B 88 224109
[18]Kim H S et al 2014 Phys. Rev. B 90 201103(R)
[19]Eom M J et al 2014 Phys. Rev. Lett. 113 266406
[20]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[21]Fradkin E et al 2010 Annu. Rev. Condens. Matter Phys. 1 153
[22]Harter J W et al 2017 Science 356 295
[23]Boyd R W 2008 Nonlinear Optics 3rd edn (San Diego: Academic Press)
[24]Shen Y R 1984 The Principles of Nonlinear Optics (New York: Wiley-Interscience)
[25]Hohlfeld J et al 2000 Chem. Phys. 251 237
[26]Mizrahi V and Sipe J E 1988 J. Opt. Soc. Am. B 5 660
[27]Hsieh D et al 2011 Phys. Rev. Lett. 106 057401
[28]Mauerer T et al 2016 Phys. Rev. B 94 014106
[29]Zhu Y and Wang Z 2018 Private communication
[30]Chen C et al 2017 Phys. Rev. B 95 094118
Related articles from Frontiers Journals
[1] Fanwei Liu, Sisi Huang, Sidan Chen, Xinzhong Chen, Mengkun Liu, Kuijuan Jin, and Xi Chen. Infrared Nano-Imaging of Electronic Phase across the Metal–Insulator Transition of NdNiO$_3$ Films[J]. Chin. Phys. Lett., 2022, 39(7): 097102
[2] Sheng Wang, Zia ur Rehman, Zhanfeng Liu, Tongrui Li, Yuliang Li, Yunbo Wu, Hongen Zhu, Shengtao Cui, Yi Liu, Guobin Zhang, Li Song, and Zhe Sun. Tailoring of Bandgap and Spin-Orbit Splitting in ZrSe$_{2}$ with Low Substitution of Ti for Zr[J]. Chin. Phys. Lett., 2022, 39(7): 097102
[3] Chuang Xie, Ling Hu, Ran-Ran Zhang, Shun-Jin Zhu, Min Zhu, Ren-Huai Wei, Xian-Wu Tang, Wen-Hai Song, Xue-Bin Zhu, and Yu-Ping Sun. Concurrent Structural and Electronic Phase Transitions in V$_2$O$_3$ Thin Films with Sharp Resistivity Change[J]. Chin. Phys. Lett., 2021, 38(7): 097102
[4] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 097102
[5] Jun Zhang, Mei-Ling Jin, Xiang Li, Xian-Cheng Wang, Jian-Fa Zhao, Ying Liu, Lei Duan, Wen-Min Li, Li-Peng Cao, Bi-Juan Chen, Li-Juan Wang, Fei Sun, Yong-Gang Wang, Liu-Xiang Yang, Yu-Ming Xiao, Zheng Deng, Shao-Min Feng, Chang-Qing Jin, and Jin-Long Zhu. Structure-Spin-Transport Anomaly in Quasi-One-Dimensional Ba$_{9}$Fe$_{3}$Te$_{15}$ under High Pressure[J]. Chin. Phys. Lett., 2020, 37(8): 097102
[6] Zi-Yi Liu, Qing-Xin Dong, Peng-Fei Shan, Yi-Yan Wang, Jian-Hong Dai, Rajesh Jana, Ke-Yu Chen, Jian-Ping Sun, Bo-Sen Wang, Xiao-Hui Yu, Guang-Tong Liu, Yoshiya Uwatoko, Yu Sui, Huai-Xin Yang, Gen-Fu Chen, Jin-Guang Cheng. Pressure-Induced Metallization and Structural Phase Transition in the Quasi-One-Dimensional TlFeSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(4): 097102
[7] Hao Wu, Yong-Hui Zhou, Yi-Fang Yuan, Chun-Hua Chen, Ying Zhou, Bo-Wen Zhang, Xu-Liang Chen, Chuan-Chuan Gu, Chao An, Shu-Yang Wang, Meng-Yao Qi, Ran-Ran Zhang, Li-Li Zhang, Xin-Jian Li, Zhao-Rong Yang. Pressure-Induced Metallization Accompanied by Elongated S–S Dimer in Charge Transfer Insulator NiS$_{2}$[J]. Chin. Phys. Lett., 2019, 36(10): 097102
[8] Xin-Min Wang, Ling-Xiao Zhao, Jing Li, Mo-Ran Gao, Wen-Liang Zhu, Chao-Yang Ma, Yi-Yan Wang, Shuai Zhang, Zhi-An Ren, Gen-Fu Chen. Negative Longitudinal Magnetoresistance in the $c$-Axis Resistivity of Cd[J]. Chin. Phys. Lett., 2019, 36(5): 097102
[9] Moran Gao, Junbao He, Wenliang Zhu, Shuai Zhang, Xinmin Wang, Jing Li, Chaoyang Ma, Hui Liang, Zhian Ren, Genfu Chen. Magnetotransport Properties of a Nodal Line Semimetal TiSi[J]. Chin. Phys. Lett., 2018, 35(11): 097102
[10] Xia-Yin Liu, Jia-Lu Wang, Wei You, Ting-Ting Wang, Hai-Yang Yang, Wen-He Jiao, Hong-Ying Mao, Li Zhang, Jie Cheng, Yu-Ke Li. Anisotropic Magnetoresistivity in Semimetal TaSb$_2$[J]. Chin. Phys. Lett., 2017, 34(12): 097102
[11] Yan Li, Zhao Sun, Jia-Wei Cai, Jian-Ping Sun, Bo-Sen Wang, Zhi-Ying Zhao, Y. Uwatoko, Jia-Qiang Yan, Jin-Guang Cheng. Pressure-Induced Charge-Order Melting and Reentrant Charge Carrier Localization in the Mixed-Valent Pb$_{3}$Rh$_{7}$O$_{15}$[J]. Chin. Phys. Lett., 2017, 34(8): 097102
[12] Ling-Xiao Zhao, Xiao-Chun Huang, Yu-Jia Long, Dong Chen, Hui Liang, Zhan-Hai Yang, Mian-Qi Xue, Zhi-An Ren, Hong-Ming Weng, Zhong Fang, Xi Dai, Gen-Fu Chen. Anomalous Magneto-Transport Behavior in Transition Metal Pentatelluride HfTe$_{5}$[J]. Chin. Phys. Lett., 2017, 34(3): 097102
[13] Zhang-Yin Zhai, Qi-Yun Xie, Gui-Bin Chen, Xiao-Shan Wu, Ju Gao. Current-Induced Reversible Resistance Jumps in La$_{0.8}$Ca$_{0.2}$MnO$_{3}$ Microbridge[J]. Chin. Phys. Lett., 2016, 33(05): 097102
[14] SUI Peng-Fei, DAI Zhen-Hong, ZHANG Xiao-Ling, ZHAO Yin-Chang. Electronic Structure and Optical Properties in Uranium Dioxide: the First Principle Calculations[J]. Chin. Phys. Lett., 2015, 32(07): 097102
[15] LI Ming-Ying, LIU Zheng-Tai, YANG Hai-Feng, ZHAO Jia-Lin, YAO Qi, FAN Cong-Cong, LIU Ji-Shan, GAO Bo, SHEN Da-Wei, XIE Xiao-Ming. Tuning the Electronic Structure of Sr2IrO4 Thin Films by Bulk Electronic Doping Using Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2015, 32(5): 097102
Viewed
Full text


Abstract