Chin. Phys. Lett.  2018, Vol. 35 Issue (9): 090303    DOI: 10.1088/0256-307X/35/9/090303
GENERAL |
Two-Photon Interference Constructed by Two Hong–Ou–Mandel Effects in One Mach-Zehnder Interferometer
Rui Liu1, Ling-Jun Kong1, Zhou-Xiang Wang1, Yu Si1, Wen-Rong Qi1, Shuang-Yin Huang1, Chenghou Tu1, Yongnan Li1**, Hui-Tian Wang2,3**
1School of Physics and Key Laboratory of Weak-Light Nonlinear Photonics, Nankai University, Tianjin 300071
2School of Physics and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093
3Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093
Cite this article:   
Rui Liu, Ling-Jun Kong, Zhou-Xiang Wang et al  2018 Chin. Phys. Lett. 35 090303
Download: PDF(846KB)   PDF(mobile)(841KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a two-photon interference experiment in a modified Mach-Zehnder (MZ) interferometer in which two Hong–Ou–Mandel effects occur in tandem and construct superposed two-photon states. The signal photons pass both the arms of the MZ interferometer while the idler photons pass one arm only. Interestingly, the probability of the idler photons emerging from any output port still shows a sine oscillation with the two-photon phase difference and it can be characterized only by the indistinguishability of the two-photon amplitudes. We also observe a two-photon interference pattern with a period being equal to the wavelength of the parametric photons instead of the two-photon photonic de Broglie wavelength due to the presence of two-photon phase difference, in particular, with complementary probabilities of finding the two-photon pairs in two output ports. The abundant observations can facilitate a more comprehensive understanding of the two-photon interference.
Received: 20 June 2018      Published: 29 August 2018
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Tx (Optical angular momentum and its quantum aspects)  
  42.25.Ja (Polarization)  
Fund: Supported by the National Key R&D Program of China under Grant Nos 2017YFA0303800 and 2017YFA0303700, the National Natural Science Foundation of China under Grant Nos 11534006, 11774183 and 11674184, the Natural Science Foundation of Tianjin under Grant No 16JCZDJC31300, and the Collaborative Innovation Center of Extreme Optics.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/9/090303       OR      https://cpl.iphy.ac.cn/Y2018/V35/I9/090303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Rui Liu
Ling-Jun Kong
Zhou-Xiang Wang
Yu Si
Wen-Rong Qi
Shuang-Yin Huang
Chenghou Tu
Yongnan Li
Hui-Tian Wang
[1]Pan J W et al 2012 Rev. Mod. Phys. 84 777
[2]Tillmann M, Tan S H, Stoeckl S E, Sanders B C, de H, Heilmann R, Nolte S, Szameit A and Walther P 2015 Phys. Rev. X 5 041015
[3]Lopes R, Imanaliev A, Aspect A, Cheneau M, Boiron D and Westbrook C I 2015 Nature 520 66
[4]Steel M 2014 Nat. Photon. 8 273
[5]Hong C K, Ou Z Y and Mandel L 1987 Phys. Rev. Lett. 59 2044
[6]Weinfurter H 1994 Europhys. Lett. 25 559
[7]Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[8]Kwiat P G and Weinfurter H 1998 Phys. Rev. A 58 R2623
[9]Bouwmeester D, Pan J W, Daniell M, Weinfurter H and Zeilinger A 1999 Phys. Rev. Lett. 82 1345
[10]Pan J W, Bouwmeester D, Daniell M, Weinfurter H and Zeilinger A 2000 Nature 403 515
[11]Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[12]Guan J Y, Cao Z, Liu Y, Shentu G L, Pelc J S, Fejer M M, Peng C Z, Ma X, Zhang Q and Pan J W 2015 Phys. Rev. Lett. 114 180502
[13]Sangouard N, Simon C, de Riedmatten H and Gisin N 2011 Rev. Mod. Phys. 83 33
[14]Hofmann J, Krug M, Ortegel N, Gérard L, Weber M, Rosenfeld W and Weinfurter H 2012 Science 337 72
[15]Teich M C, Saleh B E A, Wong F N C and Shapiro J H 2012 Quantum Inf. Process. 11 903
[16]Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P and Milburn G J 2007 Rev. Mod. Phys. 79 135
[17]Barz S, Kashefi E, Broadbent A, Fitzsimons J F, Zeilinger A and Walther P 2012 Science 335 303
[18]Kwiat P G, White A G, Mitchell J R, Nairz O, Weihs G, Weinfurter H and Zeilinger A 1999 Phys. Rev. Lett. 83 4725
[19]Motes K R, Olson J P, Rabeaux E J, Dowling J P, Olson S J and Rohde P P 2015 Phys. Rev. Lett. 114 170802
[20]Agne S, Kauten T, Jin J, Meyer-Scott E, Salvail J Z, Hamel D R, Resch K J, Weihs G and Jennewein T 2017 Phys. Rev. Lett. 118 153602
[21]Menssen A J, Jones A E, Metcalf B J, Tichy M C, Barz S, Kolthammer W S and Walmsley I A 2017 Phys. Rev. Lett. 118 153603
[22]Andersen U L, Neergaard-Nielsen J S, van Loock P and Furusawa A 2015 Nat. Phys. 11 713
[23]Etesse J, Bouillard M, Kanseri B and Tualle-Brouri R 2015 Phys. Rev. Lett. 114 193602
[24]Kok P, Lee H and Dowling J P 2002 Phys. Rev. A 65 052104
[25]Nagata T, Okamoto R, O'brien J L, Sasaki K and Takeuchi S 2007 Science 316 726
[26]Edamatsu K, Shimizu R and Itoh T 2002 Phys. Rev. Lett. 89 213601
[27]Walther P, Pan J W, Aspelmeyer M, Ursin R, Gasparoni S and Zeilinger A 2004 Nature 429 158
[28]Mitchell M W, Lundeen J S and Steinberg A M 2004 Nature 429 161
[29]Ulanov A E, Fedorov I A, Sychev D, Grangier P and Lvovsky A I 2016 Nat. Commun. 7 11925
[30]Di G, Sonnefraud Y, Tame M S, Kéna-Cohen S, Dieleman F, Özdemir Ş K, Kim M S and Maier S A 2014 Phys. Rev. Appl. 1 034004
[31]Fakonas J S, Lee H, Kelaita Y A and Atwater H A 2014 Nat. Photon. 8 317
[32]Kim H, Lee S M and Moon H S 2015 Sci. Rep. 5 9931
[33]Kim H, Lee S M and Moon H S 2016 Sci. Rep. 6 34805
[34]Grice W P, Erdmann R, Walmsley I A and Branning D 1998 Phys. Rev. A 57 R2289
[35]Mosley P J, Lundeen J S, Smith B J, Wasylczyk P, U'Ren A B, Silberhorn C and Walmsley I A 2008 Phys. Rev. Lett. 100 133601
[36]Abouraddy A F, Yarnall T M and Giuseppe G D 2013 Phys. Rev. A 87 062106
Related articles from Frontiers Journals
[1] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 090303
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 090303
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 090303
[4] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 090303
[5] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 090303
[6] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 090303
[7] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench *[J]. Chin. Phys. Lett., 0, (): 090303
[8] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench[J]. Chin. Phys. Lett., 2020, 37(6): 090303
[9] Qi-Cheng Tang, Wei Zhu. Critical Scaling Behaviors of Entanglement Spectra[J]. Chin. Phys. Lett., 2020, 37(1): 090303
[10] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 090303
[11] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 090303
[12] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 090303
[13] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 090303
[14] Wen-Bin He, Xi-Wen Guan. Exact Entanglement Dynamics in Three Interacting Qubits[J]. Chin. Phys. Lett., 2018, 35(11): 090303
[15] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 090303
Viewed
Full text


Abstract