GENERAL |
|
|
|
|
Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method |
Cai-Lang Xie1, Ying Guo1,2, Yi-Jun Wang1, Duan Huang1, Ling Zhang1** |
1School of Information Science and Engineering, Central South University, Changsha 410083 2School of IOT Engineering, Taihu University, Wuxi 214064
|
|
Cite this article: |
Cai-Lang Xie, Ying Guo, Yi-Jun Wang et al 2018 Chin. Phys. Lett. 35 090302 |
|
|
Abstract Considering the ocean water's optical attenuation and the roughness of the sea surface, we analyze the security of continuous-variable (CV) quantum key distribution (QKD) based air-to-water channel. The effects of the absorption and scattering on the transmittance of underwater quantum channel and the maximum secure transmission distance are studied. Considering the roughness of the sea surface, we simulate the performance bounds of CV QKD with different wind speeds using the Monte Carlo method. The results show that even if the secret key rate gradually reduces as the wind speed increases, the maximum transmission distance will not be affected obviously. Compared to the works regarding short-distance underwater optical communication, our research represents a significant step towards establishing secure communication between air platform and submarine vehicle.
|
|
Received: 12 March 2018
Published: 29 August 2018
|
|
PACS: |
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 61572529. |
|
|
[1] | Gisin N et al 2002 Rev. Mod. Phys. 74 145 | [2] | Lo H K et al 2014 Nat. Photon. 8 595 | [3] | Pirandola S et al 2015 Nat. Photon. 9 397 | [4] | Sun S H et al 2010 Opt. Lett. 35 1203 | [5] | Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 513 | [6] | Leverrier A et al 2010 Phys. Rev. A 81 062343 | [7] | Peuntinger C et al 2014 Phys. Rev. Lett. 113 060502 | [8] | Guo Y et al 2018 Phys. Rev. A 97 052326 | [9] | Kevin G et al 2017 Optica 4 611 | [10] | Jouguet P et al 2013 Nat. Photon. 7 378 | [11] | Gehring T et al 2015 Nat. Commun. 6 8795 | [12] | Nathan W et al 2016 Optica 3 634 | [13] | Liao Q et al 2018 New J. Phys. 20 023015 | [14] | Bai Z L et al 2016 Sci. Chin.-Phys. Mech. Astron. 59 614201 | [15] | Elser D et al 2009 New J. Phys. 11 045014 | [16] | Marcikic I et al 2003 Nature 421 509 | [17] | Bennett C H et al 1992 J. Cryptology 5 3 | [18] | Shi P, Zhao S C, Gu Y J and Li W D 2015 J. Opt. Soc. Am. A 32 349 | [19] | Ji L, Gao J, Yang A L, Feng Z, Lin X F, Li Z G and Jin X M 2017 Opt. Express 25 19795 | [20] | Philip A H and Robert A L 2014 Proc. SPIE 9114 9114 | [21] | Charles C and Walter M 1954 J. Opt. Soc. Am. 44 838 | [22] | Kong M W, Wang J L, Chen Y F, Ali T, Sarwar R, Qiu Y, Wang S L, Han J and Xu J 2017 Opt. Express 25 21509 | [23] | Zunino L, Gulich D, Funes G and Perez D G 2015 Opt. Lett. 40 3145 | [24] | Berman G P, Chumak A A and Gorshkov V N 2007 Phys. Rev. E 76 056606 | [25] | Jakeman E and Ridley K D 2007 Waves Random Complex Media 17 405 | [26] | Vasylyev D Y, Semenov A A and Vogel W 2012 Phys. Rev. Lett. 108 220501 | [27] | Vladyslav C U, Bettina H, Christian P, Christoffer W, Christoph M, Gerd L and Radim F 2012 New J. Phys. 14 093048 | [28] | Dong R F, Lassen M, Heersink J, Marquardt C, Filip R, Leuchs G and Andersen U L 2010 Phys. Rev. A 82 012312 | [29] | Guo Y, Xie C L, Liao Q, Zhao W, Zeng G H and Huang D 2017 Phys. Rev. A 96 022320 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|