Chin. Phys. Lett.  2018, Vol. 35 Issue (9): 090301    DOI: 10.1088/0256-307X/35/9/090301
GENERAL |
Robust Set Stabilization and Its Instances for Open Quantum Systems
Ming Zhang1, Zairong Xi2, Tzyh-Jong Tarn3
1College of Artificial Intelligence, National University of Defense Technology, Changsha 410073
2Key Laboratory of Systems and Control, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190
3Department of Electrical and Systems Engineering, Washington University in St. Louis, MO 63130-4899, USA
Cite this article:   
Ming Zhang, Zairong Xi, Tzyh-Jong Tarn 2018 Chin. Phys. Lett. 35 090301
Download: PDF(489KB)   PDF(mobile)(485KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose and discuss a novel concept of robust set stabilization by permissible controls; this concept is helpful when dealing with both a priori information of model parameters and different permissible controls including quantum measurements. Both controllability and stabilization can be regarded as the special case of the novel concept. An instance is presented for a kind of uncertain open quantum systems to further justify this generalized concept. It is underlined that a new type of hybrid control based on periodically perturbed projective measurements can be the permissible control of uncertain open quantum systems when perturbed projective measurements are available. The sufficient conditions are given for the robust set stabilization of uncertain quantum open systems by the hybrid control, and the design of the hybrid control is reduced to selecting the period of measurements.
Received: 21 May 2018      Published: 29 August 2018
PACS:  03.67.-a (Quantum information)  
  03.65.-w (Quantum mechanics)  
  02.30.Yy (Control theory)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61673389, 61273202 and 61134008.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/9/090301       OR      https://cpl.iphy.ac.cn/Y2018/V35/I9/090301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ming Zhang
Zairong Xi
Tzyh-Jong Tarn
[1] Shannon R R 1999 Proc. SPIE 3705 180
[2] Mills J P 2001 Proc. SPIE 4442 101
[3] Wang C, Zhang X and Qu H M 2013 Chin. Phys. B 22 074212
[4] Leroux C E, Tzschachmann A and Dainty J C 2010 Opt. Express 18 21567
[5] Chang J, Liu L P, Cheng D W and Zhao N 2009 J. Infrared Millim. Waves 28 204
[6] Trotta P A 2001 Proc. SPIE 4375 152
[7] Jacob R, Aaron B, Kevin P T and Jannick P R 2016 Light:Science & Applications 6 e17026
[8] Christopher J R, Demian P and Oliver T B 2017 Light:Science & Applications 6 e16255
[9] Lei Z M, Sun X Y and LV F N 2016 Chin. Phys. B 25 114201
[10] Zhang W, Zuo B J and Chen S Q 2013 Applied Optics 52 461
[11] Li Y, Li L, Huang Y F and Liu J G 2009 Chin. Phys. B 18 2769
[12] Sun J X, Sun Q, Li D X and Lu Z W 2007 Acta Phys. Sin. 56 3900(in Chinese)
[13] Sparrold S W 1999 Proc. SPIE 3705 189
[14] Whalen M R 1999 Proc. SPIE 3482 201
[15] Lambda Research Corporation 2014 Zemax Reference Manual
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 090301
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 090301
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 090301
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 090301
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 090301
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 090301
[7] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 090301
[8] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 090301
[9] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 090301
[10] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 090301
[11] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 090301
[12] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 090301
[13] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 090301
[14] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 090301
[15] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 090301
Viewed
Full text


Abstract