CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Total Ionizing Dose Effects of 55-nm Silicon-Oxide-Nitride-Oxide-Silicon Charge Trapping Memory in Pulse and DC Modes |
Mei Li1,2, Jin-Shun Bi1,2**, Yan-Nan Xu1,2, Bo Li1, Kai Xi1, Hai-Bin Wang3, Jing-Liu1, Jin-Li1, Lan-Long Ji1, Li Luo4, Ming Liu1 |
1Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 2University of Chinese Academy of Sciences, Beijing 100049 3School of Internet of Things Engineering, HoHai University, Changzhou 213022 4Beijing Jiaotong University, Beijing 100044
|
|
Cite this article: |
Mei Li, Jin-Shun Bi, Yan-Nan Xu et al 2018 Chin. Phys. Lett. 35 078502 |
|
|
Abstract The $^{60}$Co-$\gamma$ ray total ionizing dose radiation responses of 55-nm silicon-oxide-nitride-oxide-silicon (SONOS) memory cells in pulse mode (programmed/erased with pulse voltage) and dc mode (programmed/erased with direct voltage sweeping) are investigated. The threshold voltage and off-state current of memory cells before and after radiation are measured. The experimental results show that the memory cells in pulse mode have a better radiation-hard capability. The normalized memory window still remains at 60% for cells in dc mode and 76% for cells in pulse mode after 300 krad(Si) radiation. The charge loss process physical mechanisms of programmed SONOS devices during radiation are analyzed.
|
|
Received: 02 April 2018
Published: 24 June 2018
|
|
PACS: |
85.30.-z
|
(Semiconductor devices)
|
|
07.89.+b
|
(Environmental effects on instruments (e.g., radiation and pollution effects))
|
|
61.80.Ed
|
(γ-ray effects)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 616340084, the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No 2014101, and the Austrian-Chinese Cooperative R&D Projects of International Cooperation Project of Chinese Academy of Sciences under Grant No 172511KYSB20150006. |
|
|
[1] | White M H, Adam D A and Bu J K 2000 IEEE Circuits Devices Mag. 16 22 | [2] | Qiao F Y, Pan L Y, Pirter B et al 2014 IEEE Trans. Nucl. Sci. 61 955 | [3] | Lv S C, Ge Z Y, Zhou Y et al 2010 Chin. Phys. Lett. 27 068502 | [4] | Bi J S, Xu Y N, Xu G B et al 2018 IEEE Trans. Nucl. Sci. 65 200 | [5] | Liao Z W, Huang Y, Zhang M et al 2008 Chin. Phys. Lett. 25 1908 | [6] | Puchner H, Ruths P, Prabhakar V et al 2014 IEEE Trans. Nucl. Sci. 61 3005 | [7] | Bassi S and Pattanaik M 2014 Int. Symp. VLSI Design. Test (Coimbatore 16–18 July 2014) p 1 | [8] | Qiao F Y, Yu X, Pan L Y et al 2012 Int. Symp. Phys. Failure Anal. Integr. Circuits (Singapore 2–6 July 2012) p 1 | [9] | Aritome S, Shirota R, Hemink G et al 1993 Proc. IEEE 81 776 | [10] | Hu S G, Cao Y R, Hao Y et al 2008 Chin. Phys. Lett. 25 4109 | [11] | Cao Y R, Hao Y, Ma X H et al 2008 Chin. Phys. Lett. 25 1427 | [12] | Chou A I, Lai K, Kumar K et al 1997 Appl. Phys. Lett. 70 3407 | [13] | Jazaeri F, Zhang C M, Pezzotta A et al 2017 IEEE J. Electron Devices Soc. 6 85 | [14] | Liu Y, Liu K, Chen R S et al 2017 Chin. Phys. Lett. 34 018501 | [15] | Park S, Lee J, Ryu Y et al 2010 IEEE Int'l Conf. Electron. Cir. Sys. (Athens 12-15 Dec 2010) p 289 | [16] | Liang M S, Haddad S, Cox W et al 1986 IEEE Int. Electron Devices Meet. 32 394 | [17] | Rebuffat B, Masson P, Ogier J L et al 2014 Int. Symp. Integr. Circuits (Singapore 10–12 Dec 2014) p 416 | [18] | White M H, Yang Y, Purwar A et al 1997 IEEE Trans. Compon. Packag. Manuf. Technol. 20 190 | [19] | Rosenbaum E and Hu C M 1991 IEEE Electron Device Lett. 12 267 | [20] | Oldham T R and McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483 | [21] | McWhorter P J, Miller S L and Dellin T A 1986 IEEE Trans. Nucl. Sci. 33 1413 | [22] | Lee M C and Wong H Y 2014 J. Nanotechnol. 14 1508 | [23] | Chien H C, Kao C H, Chang J W et al 2005 Microelectron. Eng. 80 256 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|