CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Wavelength Extended InGaAsBi Detectors with Temperature-Insensitive Cutoff Wavelength |
Ben Du1,2, Yi Gu1, Yong-Gang Zhang1**, Xing-You Chen1, Ying-Jie Ma1, Yan-Hui Shi1,2, Jian Zhang1,2 |
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 2University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Ben Du, Yi Gu, Yong-Gang Zhang et al 2018 Chin. Phys. Lett. 35 078501 |
|
|
Abstract We demonstrate a wavelength extended InGaAsBi short-wave infrared photodetector on an InP substrate with the 50% cutoff wavelength up to 2.63 μm at room temperature. The moderate growth temperature is applied to balance the Bi incorporation and material quality. Photoluminescence and x-ray diffraction reciprocal space mapping measurements reveal the contents of bismuth and indium in InGaAsBi to be about 2.7% and 76%, respectively. The InGaAsBi detector shows the temperature-insensitive cutoff wavelength with a low coefficient of about 0.96 nm/K. The demonstration indicates the InP-based InGaAsBi material is a promising candidate for wavelength extended short-wave infrared detectors working.
|
|
Received: 24 January 2018
Published: 24 June 2018
|
|
PACS: |
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
81.15.Hi
|
(Molecular, atomic, ion, and chemical beam epitaxy)
|
|
78.30.Fs
|
(III-V and II-VI semiconductors)
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFB0402400, the National Basic Research Program of China under Grant No 2014CB643900, the National Natural Science Foundation of China under Grant Nos 61775228, 61605232, 61675225 and 61334004, and the Shanghai Rising-Star Program under Grant No 17QA1404900. |
|
|
[1] | Hoogeveen R W M, van der A R J and Goede A P H 2001 Infrared Phys. Technol. 42 1 | [2] | Zhang Y G, Gu Y, Tian Z B et al 2009 J. Cryst. Growth 311 1881 | [3] | Zhang Y G, Gu Y, Tian Z B et al 2008 Infrared Phys. Technol. 51 316 | [4] | Paul S, Roy J B and Basu P K 1991 J. Appl. Phys. 69 827 | [5] | Tominaga Y, Oe K and Yoshimoto M 2010 Appl. Phys. Express 3 062201 | [6] | Oe K and Okamoto H 1998 Jpn. J. Appl. Phys. 37 L1283 | [7] | Feng G, Yoshimoto M, Oe K et al 2005 Jpn. J. Appl. Phys. 44 L1161 | [8] | Zhong Y, Dongmo P B, Petropoulos J P et al 2012 Appl. Phys. Lett. 100 112110 | [9] | Chen X Y, Gu Y, Zhang Y G et al 2016 AIP Adv. 6 075215 | [10] | Gu Y, Zhang Y G, Chen X Y et al 2016 Appl. Phys. Lett. 108 032102 | [11] | Feng G, Oe K and Yoshimoto M 2007 J. Cryst. Growth 301 121 | [12] | Pettinari G, Polimeni A, Capizzi M et al 2008 Appl. Phys. Lett. 92 262105 | [13] | Alberi K, Dubon O D, Walukiewicz W et al 2007 Appl. Phys. Lett. 91 051909 | [14] | Okamoto H and Oe K 1999 Jpn. J. Appl. Phys. 38 1022 | [15] | Zhou L, Zhang Y G, Gu Y et al 2015 J. Alloys Compd. 619 52 | [16] | Gu Y, Zhou L, Zhang Y G et al 2015 Appl. Phys. Express 8 022202 | [17] | Li C, Zhang Y G, Wang K et al 2010 Infrared Phys. Technol. 53 173 | [18] | Klem J F, Kim J K, Cich M J et al 2009 Appl. Phys. Lett. 95 031112 | [19] | Du B, Gu Y, Zhang Y G et al 2016 J. Cryst. Growth 440 1 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|