CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
An Efficiency Enhanced Graphene/n-Si Schottky Junction for Solar Cells |
Gang Li1, Hong-Wei Cheng1, Li-Fang Guo1, Kai-Ying Wang1**, Zai-Jun Cheng2** |
1MicroNano System Research Center, College of Information and Computer & Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 2School of Optoelectronic and Communication Engineering, Xiamen University of Technology, Xiamen 361024
|
|
Cite this article: |
Gang Li, Hong-Wei Cheng, Li-Fang Guo et al 2018 Chin. Phys. Lett. 35 076801 |
|
|
Abstract A novel and facile oxidation-induced self-doping process of graphene-silicon Schottky junction by nitric acid (HNO$_{3}$) vapor is reported. The HNO$_{3}$ oxidation process makes graphene p-type self-doped, and leads to a higher built-in potential and conductivity to enhance charge transfer and to suppress charge carrier recombination at the graphene-silicon Schottky junction. After the HNO$_{3}$ oxidation process, the open-circuit voltage is increased from the initial value of 0.36 V to the maximum value of 0.47 V, the short-circuit current is greatly increased from 0.80 $\mu$A to 7.71 $\mu$A, and the ideality factor is optimized from 4.4 to 1.0. The enhancement of the performance of graphene-Si solar cells may be due to oxidation-induced p-type self-doping of graphene-Si junctions.
|
|
Received: 08 March 2018
Published: 24 June 2018
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61504113, 61674113 and 51622507, the Natural Science Foundation of Shanxi Province under Grant No 2016011040, the Natural Science Foundation of Fujian Province under Grant No 2018J01567, and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province under Grant No 2016138. |
|
|
[1] | Wang Y S, Chen C Y, Fang X, Li Z P, Qiao H, Sun B Q and Bao Q L 2015 J. Solid State Chem. 224 102 | [2] | Ye Y and Da L 2012 J. Mater. Chem. 22 24224 | [3] | Tang J, Wang X H, Brzozowski L, Barkhouse D A R, Debnath R, Levina L and Sargent E 2010 Adv. Mater. 22 1398 | [4] | Sun Y Q, Wu Q and Shi G Q 2011 Energy Environ. Sci. 4 1113 | [5] | Jensen S A, Ulbricht R, Narita A, Feng X L, Müllen K, Hertel T, Turchinovich D and Bonn M 2013 Nano Lett. 13 5925 | [6] | Liu G H, Hoivik N, Wang X M, Lu S S, Wang K Y and Jakobsen H 2013 Electrochim. Acta 93 80 | [7] | Sun H P et al 2014 Electrochim. Acta 137 661 | [8] | Zhao P X, Tang Y, Mao J, Chen Y X, Song H, Wang J W, Song Y, Liang Y Q and Zhang X M 2016 J. Alloys Compd. 674 252 | [9] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 | [10] | Xing G C, Guo H C, Zhang X H, Sum T C and Huan C H A 2010 Opt. Express 18 4564 | [11] | Wang T S, Liu Z H, Lu M M, Wen B, Ouyang Q Y, Chen Y J, Zhu C L, Gao P, Li C Y, Cao M S and Qi L H 2013 J. Appl. Phys. 113 666 | [12] | Li X S, Zhu Y W, Cai W W, Borysiak M, Han B, Chen D, Piner R D, Colombo L and Ruoff R S 2009 Nano Lett. 9 4359 | [13] | Fan X B, Peng W C, Li Y, Li X Y, Wang S L, Zhang G L and Zhang F B 2008 Adv. Mater. 20 4490 | [14] | Lee G H, Yu Y J, Cui X, Petrone N, Lee C H, Choi M S, Lee D Y, Lee C, Yoo W J, Watanabe K, Taniguchi T, Nuckolls C, Kim P and Hone J 2013 ACS Nano 7 7931 | [15] | Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706 | [16] | Li C, Moncorgé R, Wyon C and Aubert J 2013 Advanced Solid State Lasers (Boston: OSA) | [17] | Li X M, Zhu H W, Wang K L, Cao A Y, Wei J Q, Li C Y, Jia Y, Li Z, Li X and Wu D H 2010 Adv. Mater. 22 2743 | [18] | Yin C R, Ye S H, Zhao J, Yi M D, Xie L H, Lin Z Q, Chang Y Z, Liu F, Xu H, Shi N E, Qian Y and Huang W 2011 Macromolecules 44 4589 | [19] | Li Y F, Yang W, Tu Z Q, Liu Z C, Yang F, Zhang L Q and Hatakeyama R 2014 Appl. Phys. Lett. 104 043903 | [20] | Feng T T, Xie D, Lin Y X, Zang Y Y, Ren T L, Song R, Zhao H M, Tian H, Li X, Zhu H M and Liu L T 2011 Appl. Phys. Lett. 99 233505 | [21] | Lancellotti L, Bobeico E, Capasso A, Lago E, Veneri P D, Leoni E, Buonocore F and Lisi N 2016 Sol. Energy 127 198 | [22] | Basko D M, Piscanec S and Ferrari A C 2009 Phys. Rev. B 80 165413 | [23] | Das A, Chakraborty B, Piscanec S, Pisana S, Sood A K and Ferrari A C 2009 Phys. Rev. B 79 155417 | [24] | Wassei J K, Cha K C, Tung V C, Yang Y and Kaner R B 2011 J. Mater. Chem. 21 3391 | [25] | Allen M J, Wang M, Jannuzzi S A, Yang Y, Wang K L and Kaner R B 2009 Chem. Commun. 41 6285 | [26] | Ni Z H, Wang Y Y, Yu T and Shen Z X 2008 Nano Res. 1 273 | [27] | Dahal R, Pantha B, Li J, Lin J Y and Jiang H X 2009 Appl. Phys. Lett. 94 063505 | [28] | Shi E Z, Li H B, Yang L, Zhang L H, Li Z, Li P X, Shang Y Y, Wu S T, Li X M, Wei J Q, Wang K L, Zhu H M, Wu D H, Fang Y and Cao A Y 2013 Nano Lett. 13 1776 | [29] | Sze S M 2008 Physics of Semiconductor Devices 3nd edn (Xi'an, Xi'an Jiaotong University Press) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|