Chin. Phys. Lett.  2018, Vol. 35 Issue (7): 075202    DOI: 10.1088/0256-307X/35/7/075202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Dynamics of Ring-to-Volume Discharge Transition in $H$ Mode in Inductively Coupled Plasma Torches at Atmospheric Pressure
Qi-Jia Guo1,2, Guo-Hua Ni1,3**, Lin Li1, Qi-Fu Lin1, Yan-Jun Zhao1, Si-Yuan Sui1, Hong-Bing Xie1, Wen-Xue Duan1, Yue-Dong Meng1
1Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031
2University of Science and Technology of China, Hefei 230026
3AnHui Province Key Laboratory of Medical Physics and Technology, Hefei 230031
Cite this article:   
Qi-Jia Guo, Guo-Hua Ni, Lin Li et al  2018 Chin. Phys. Lett. 35 075202
Download: PDF(832KB)   PDF(mobile)(828KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The transition process in ring-to-volume discharge in $H$ mode in inductively coupled plasma torches at atmospheric pressure is investigated by analyzing the time resolved image taken by a high speed camera. The effects of input power, plasma working gas flow rate, and its composition on the transition dynamics are also discussed. The results show that the discharge plasma has experienced ring discharge, and the development stage diffused from the boundary to the center in the confinement tube, and steady volume discharge after entering the $H$ mode. Increasing input power, sheath gas flow rate and hydrogen contents in plasma working gas are all able to lessen the time consumed in the transition process in ring-to-volume discharge.
Received: 12 March 2018      Published: 24 June 2018
PACS:  52.50.Qt (Plasma heating by radio-frequency fields; ICR, ICP, helicons)  
  52.30.Cv (Magnetohydrodynamics (including electron magnetohydrodynamics))  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 21377133, 11535003 and 11505223, the Provincial Science and Technology Major Project of Anhui Province under Grant No 17030801035, and the Science and Technology Service Network Initiative of Chinese Academy of Sciences.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/7/075202       OR      https://cpl.iphy.ac.cn/Y2018/V35/I7/075202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qi-Jia Guo
Guo-Hua Ni
Lin Li
Qi-Fu Lin
Yan-Jun Zhao
Si-Yuan Sui
Hong-Bing Xie
Wen-Xue Duan
Yue-Dong Meng
[1]Ye R, Ishigaki T, Jurewicz J, Proulx P and Boulos M I 2004 Plasma Chem. Plasma Process. 24 555
[2]Kobayashi N, Kawakami Y, Kamada K, Li J G , Ye R, Watanabe T and Ishigaki T 2008 Thin Solid Films 516 4402
[3]Inagaki M, Yokogawa Y and Kameyama T 2003 Surf. Coat. Technol. 173 1
[4]Inagaki M, Yokogawa Y and Kameyama T 2006 J. Eur. Ceram. Soc. 26 495
[5]Harbec D, Gitzhofer F and Tagnit-Hamou A 2011 Powder Technol. 214 356
[6]Ye R, Li J G and Ishigaki T 2007 Thin Solid Films 515 4251
[7]Shi Y C, Li J J, Liu H, Zuo Y G, Bai Y, Sun Z F, Zhan F, Ma D L and Chen G C 2015 Chin. Phys. Lett. 32 088104
[8]Wang Y H, Liu W, Zhang Y R and Wang Y N 2015 Chin. Phys. B 24 095203
[9]Tanaka Y and Sakuta T 2003 Plasma Sources Sci. Technol. 12 69
[10]Nishiyama H, Muro Y and Kamiyama S 1996 J. Phys. D 29 2634
[11]Wang W L, Li J, Song H M, Jin D, Jia M and Wu Y 2017 Chin. Phys. B 26 015205
[12]Reed T B 1961 J. Appl. Phys. 32 2534
[13]Boulos M I 1985 Pure & Appl. Chem. 57 1321
[14]Fauchais P L, Heberlein J V R and Boulos M I 2014 Thermal Spray Fundamentals–From Powder to Part (New York: Springer) chap 8 p 490
[15]Razzak M A, Takamura S and Uesugi Y 2004 J. Appl. Phys. 96 4771
[16]Razzak M A, Kondo K, Uesugi Y, Ohno N and Takamura S 2004 J. Appl. Phys. 95 427
[17]Razzak M A, Student Member, IEEE, Takamura S and Uesugi Y 2005 IEEE Trans. Plasma Sci. 33 284
[18]Altenberend J, Chichignoud G and Delannoy Y 2012 Plasma Sources Sci. Technol. 21 045011
[19]Boulos M I, Fauchais P and Pfender E 1994 Thermal Plasmas Fundamentals and Applications (New York: Plenum Press) vol 1 p 388
[20]Iwao T, Cronin P, Bendix D and Heberlein J V R 2005 IEEE Trans. Plasma Sci. 33 1123
[21]Sesi N N, Mackenzie A, Shanks K E, Yang P and Hieftje G M 1994 Spectrochim. Acta Part B 49 1259
Related articles from Frontiers Journals
[1] Zhong-Zhen Wu, Shu Xiao, Sui-Han Cui, Ricky K. Y. Fu, Xiu-Bo Tian, Paul K. Chu, Feng Pan. Origin of Initial Current Peak in High Power Impulse Magnetron Sputtering and Verification by Non-Sputtering Discharge[J]. Chin. Phys. Lett., 2016, 33(07): 075202
[2] YU Yong-Hao, WANG Lang-Ping, WANG Xiao-Feng, JIANG Wei, CHEN Qiong. Diagnostics of Metal Plasma in Radio Frequency Glow Discharge during Electron Beam Evaporation[J]. Chin. Phys. Lett., 2015, 32(08): 075202
[3] LI Xiao-Ling**, WAN Bao-Nian, ZHONG Guo-Qiang, HU Li-Qun, LIN Shi-Yao, ZHANG Xin-Jun, ZANG Qing . Neutron Flux Measurements in an ICRF Mode Conversion Regime Heating Plasmas on HT-7[J]. Chin. Phys. Lett., 2011, 28(10): 075202
[4] DAI Zhong-Ling, WANG You-Nian** . Nonlinear Plasma Dynamics in Electron Heating of Asymmetric Capacitive Discharges with a Fluid Sheath Model[J]. Chin. Phys. Lett., 2011, 28(7): 075202
[5] ZHANG Xian-Mei, WAN Bao-Nian, WU Zhen-Wei, HT- Team. High Bootstrap Current Fraction during the Synergy of LHCD and IBW on the HT-7 Tokamak[J]. Chin. Phys. Lett., 2005, 22(6): 075202
[6] YU Guo-Yang, CHANG Yong-Bin, SHEN Lin-Fang. Fusion Reactivity in the Case of Ion Cyclotron Resonant Heating[J]. Chin. Phys. Lett., 2003, 20(11): 075202
[7] FANG Tong-Zhen, WANG Long, JIANG Di-Ming, ZHANG Hou-Xian. Helicon Discharge Using a Nagoya Type III Antenna[J]. Chin. Phys. Lett., 2001, 18(8): 075202
Viewed
Full text


Abstract