Chin. Phys. Lett.  2018, Vol. 35 Issue (7): 075201    DOI: 10.1088/0256-307X/35/7/075201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Propagation and Damping of Two-Fluid Magnetohydrodynamic Waves in Stratified Solar Atmosphere
Yong-Jian Jin1**, Hui-Nan Zheng1,2, Zhen-Peng Su 1,2
1CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026
2Collaborative Innovation Center of Astronautical Science and Technology, University of Science and Technology of China, Hefei 230026
Cite this article:   
Yong-Jian Jin, Hui-Nan Zheng, Zhen-Peng Su 2018 Chin. Phys. Lett. 35 075201
Download: PDF(634KB)   PDF(mobile)(624KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An extreme ultra-violet (EUV) wave is characterized as a bright pulse that has emanated from the solar eruption source and can propagate globally in the solar corona. According to one leading theory, the EUV wave is a fast magnetoacoustic wave, as the coronal counterpart of the Moreton wave in the chromosphere. However, previous observations have shown that the EUV wave differs significantly from the Moreton wave in both velocity and lifetime. To reconcile these differences, here we analyze the wave characteristics of a two-fluid MHD model in the stratified solar atmosphere with a height-dependent ionization rate. It is found that the collision between neutral and ionized fluids is able to attenuate the wave amplitude, while causing a slight change in its propagation velocity. Because the chromosphere has the lower ionization rate and the stronger magnetic fields than the corona, the velocity of the Moreton wave is much higher than that of the EUV wave. In contrast to the Moreton waves damped strongly by the collision between neutral and ionized fluids, the EUV wave in the fully ionized corona is able to propagate globally on a time scale of several hours. Our results support the previous theory that fast magnetoacoustic waves account for both EUV and Moreteon waves in the different layers of the solar atmosphere.
Received: 19 April 2018      Published: 24 June 2018
PACS:  52.30.Cv (Magnetohydrodynamics (including electron magnetohydrodynamics))  
  52.30.Ex (Two-fluid and multi-fluid plasmas)  
  96.60.-j (Solar physics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/7/075201       OR      https://cpl.iphy.ac.cn/Y2018/V35/I7/075201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yong-Jian Jin
Hui-Nan Zheng
Zhen-Peng Su
[1]Plunkett S P, Thompson B J, Howard R A, Michels D J, St O C, Tappin S J, Schwenn R and Lamy P L 1998 Geophys. Res. Lett. 25 2477
[2]Thompson B J, Plunkett S P, Gurman J B, Newmark J S, St O C and Michels D J 1998 Geophys. Res. Lett. 25 2465
[3]Thompson B J and Myers D C 2009 Astrophys. J. Suppl. Ser. 183 225
[4]Muhr N, Veronig A M, Kienreich I W, Vrs̆nak B, Temmer M and Bein B M 2014 Sol. Phys. 289 4563
[5]Long D M, Bloomfield D S, Chen P F, Downs C, Gallagher P T, Kwon R Y, Vanninathan K, Veronig A M, Vourlidas A, Vrs̆nak B, Warmuth A and Z̆ic T 2017 Sol. Phys. 292 7
[6]West M J, Zhukov A N, Dolla L and Rodriguez L 2011 Astrophys. J. 730 122
[7]Cally P S and Xiong M 2018 J. Phys. A 51 025501
[8]Warmuth A 2015 Living Rev. Sol. Phys. 12 3
[9]Chen P F 2017 Sci. Chin.-Phys. Mech. Astron. 60 029631
[10]Delannée C and Aulanier G 1999 Sol. Phys. 190 107
[11]Chen P F, Wu S T, Shibata K and Fang C 2002 Astrophys. J. 572 L99
[12]Chen P F 2009 Astrophys. J. 698 L112
[13]Uchida Y 1968 Sol. Phys. 4 30
[14]Vrs̆nak B, Z̆ic T, Lulić S, Temmer M and Veronig A M 2016 Sol. Phys. 291 89
[15]Wang Y M 2000 Astrophys. J. 543 L89
[16]Downs C, Roussev I I, van der Holst B, Lugaz N, Sokolov I V and Gombosi T I 2011 Astrophys. J. 728 2
[17]Downs C, Roussev I I, van der Holst B, Lugaz N and Sokolov I V 2012 Astrophys. J. 750 134
[18]Kwon R Y, Ofman L, Olmedo O, Kramar M, Davila J M, Thompson B J and Cho K S 2013 Astrophys. J. 766 55
[19]Warmuth A, Vrs̆nak B, Aurass H and Hanslmeier A 2001 Astrophys. J. 560 L105
[20]Warmuth A, Vrs̆nak B, Magdalenić J, Hanslmeier A and Otruba W 2004 Astron. Astrophys. 418 1101
[21]Warmuth A, Vrs̆nak B, Magdalenić J, Hanslmeier A and Otruba W 2004 Astron. Astrophys. 418 1117
[22]Zheng H N, Zhang Y Y, Wang S, Wang C B and Li Y 2006 Chin. Phys. Lett. 23 399
[23]Gopalswamy N, Yashiro S, Temmer M, Davila J, Thompson W T, Jones S, McAteer R T J, Wuelser J P, Freel S and Howard R A 2009 Astrophys. J. Lett. 691 L123
[24]Asai A, Ishii T T, Isobe H, Kitai R, Ichimoto K, Ueno S, Nagata S, Morita S, Nishida K, Shiota D, Oi A, Akioka M and Shibata K 2012 Astrophys. J. Lett. 745 L18
[25]Olmedo O, Vourlidas A, Zhang J and Cheng X 2012 Astrophys. J. 756 143
[26]Muhr N, Vrs̆nak B, Temmer M, Veronig A M and Magdalenić J 2010 Astrophys. J. 708 1639
[27]Liu R, Liu C, Xu Y, Liu W, Kliem B and Wang H 2013 Astrophys. J. 773 166
[28]Wills-Davey M J, DeForest C E and Stenflo J O 2007 Astrophys. J. 664 556
[29]Wang H, Shen C and Lin J 2009 Astrophys. J. 700 1716
[30]Patsourakos S and Vourlidas A 2012 Sol. Phys. 281 187
[31]Liu W and Ofman L 2014 Sol. Phys. 289 3233
[32]Stein R F and Leibacher J 1974 Annu. Rev. Astron. Astrophys. 12 407
[33]Lenz D D 1999 Astrophys. J. 517 497
[34]Schunk R W 1975 Planet. Space Sci. 23 437
[35]Judge P G and Peter H 1998 Space Sci. Rev. 85 187
[36]Vernazza J E, Avrett E H and Loeser R 1981 Astrophys. J. 45 635
[37]Cargill P J, Spicer D S and Zalesak S T 1997 Astrophys. J. 488 854
[38]Khodachenko M L, Arber T D, Rucker H O and Hanslmeier A 2004 Astron. Astrophys. 422 1073
[39]Bravo S, Stewart G A and Blanco-Cano X 1998 Sol. Phys. 179 223
Related articles from Frontiers Journals
[1] Tong Liu , Lai Wei , Feng Wang, and Zheng-Xiong Wang . Coriolis Force Effect on Suppression of Neo-Classical Tearing Mode Triggered Explosive Burst in Reversed Magnetic Shear Tokamak Plasmas[J]. Chin. Phys. Lett., 2021, 38(4): 075201
[2] Jian-Qiang Xu, Xiao-Dong Peng , Hong-Peng Qu , Guang-Zhou Hao . Stabilization of Short Wavelength Resistive Ballooning Modes by Ion-to-Electron Temperature and Gradient Ratios in Tokamak Edge Plasmas *[J]. Chin. Phys. Lett., 0, (): 075201
[3] Jian-Qiang Xu, Xiao-Dong Peng , Hong-Peng Qu , Guang-Zhou Hao . Stabilization of Short Wavelength Resistive Ballooning Modes by Ion-to-Electron Temperature and Gradient Ratios in Tokamak Edge Plasmas[J]. Chin. Phys. Lett., 2020, 37(6): 075201
[4] Tiegang Fang, Fujun Wang. Viscous Slip MHD Flow over a Moving Sheet with an Arbitrary Surface Velocity[J]. Chin. Phys. Lett., 2018, 35(10): 075201
[5] Qi-Jia Guo, Guo-Hua Ni, Lin Li, Qi-Fu Lin, Yan-Jun Zhao, Si-Yuan Sui, Hong-Bing Xie, Wen-Xue Duan, Yue-Dong Meng. Dynamics of Ring-to-Volume Discharge Transition in $H$ Mode in Inductively Coupled Plasma Torches at Atmospheric Pressure[J]. Chin. Phys. Lett., 2018, 35(7): 075201
[6] Yan-Liang Ji, Ben-Mou Zhou, Ya-Dong Huang. Mechanism of Electromagnetic Flow Control Enhanced by Electro-Discharge in Water[J]. Chin. Phys. Lett., 2018, 35(5): 075201
[7] Lu-Lu Li, Yue-Song Jia, Qi-Zhi Sun, Wei Liu, Zheng-Fen Liu, Wei-Dong Qin, Jun Li, Yuan Chi, Xian-Jun Yang. Formation Process of Magnetized Fusion Target on the YingGuang 1 Device[J]. Chin. Phys. Lett., 2016, 33(04): 075201
[8] Yi-Fan Yan, Zhong-Tian Wang, Zhi-Xiong He, Li-Ming Yu, Zhan-Hui Wang, Jia-Qi Dong, Hui-Dong Li, Hao Feng. Theoretical Analysis of the Frequency Jump in E-fishbone Experiments[J]. Chin. Phys. Lett., 2016, 33(01): 075201
[9] ZHAO Kai-Ge, WANG Li-Feng, YE Wen-Hua, WU Jun-Feng, LI Ying-Jun. Incompressible Magnetohydrodynamic Kelvin–Helmholtz Instability with Continuous Profiles[J]. Chin. Phys. Lett., 2014, 31(03): 075201
[10] LIU Yuan-Tao, ZHAO Hua, LI Lei, FENG Yong-Yong. Solution of Magnetohydrodynamic Oscillations in Electrolytes with Ion-Neutral Collisions[J]. Chin. Phys. Lett., 2012, 29(11): 075201
[11] ZHOU Yu-Fen, FENG Xue-Shang. A New Hybrid Numerical Scheme for Two-Dimensional Ideal MHD Equations[J]. Chin. Phys. Lett., 2012, 29(9): 075201
[12] LI Li, LIU Yue. Study on the Resistive Wall Instability Driven by Plasma Flow[J]. Chin. Phys. Lett., 2012, 29(7): 075201
[13] JI Zhen, **, ZHOU Yu-Fen, HOU Tian-Xiang . A Modified Third-Order Semi-Discrete Central-Upwind Scheme for MHD Simulation[J]. Chin. Phys. Lett., 2011, 28(7): 075201
[14] G. A. Hoshoudy . Quantum Effects on Rayleigh–Taylor Instability of Incompressible Plasma in a Vertical Magnetic Field[J]. Chin. Phys. Lett., 2010, 27(12): 075201
[15] FANG Tie-Gang, ZHANG Ji, YAO Shan-Shan. Slip Magnetohydrodynamic Viscous Flow over a Permeable Shrinking Sheet[J]. Chin. Phys. Lett., 2010, 27(12): 075201
Viewed
Full text


Abstract