Chin. Phys. Lett.  2018, Vol. 35 Issue (6): 066802    DOI: 10.1088/0256-307X/35/6/066802
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Metastable Face-Centered Cubic Structure and Structural Transition of Sn on 2H-NbSe$_{2}$ (0001)
Ai-Min Li1, Lu-Dong1, Xin-Yi Yang1, Zhen Zhu1, Guan-Yong Wang1, Dan-Dan Guan1,2**, Hao Zheng1,2, Yao-Yi Li1,2, Canhua Liu1,2, Dong Qian1,2, Jin-Feng Jia1.2**
1Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240
2Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093
Cite this article:   
Ai-Min Li, Lu-Dong, Xin-Yi Yang et al  2018 Chin. Phys. Lett. 35 066802
Download: PDF(1005KB)   PDF(mobile)(999KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Surface structures and properties of Sn islands grown on superconducting substrate 2H-NbSe$_{2}$(0001) are studied using low temperature scanning tunneling microscopy or spectroscopy. The pure face-centered cubic (fcc) structure of Sn surface is obtained. Superconductivity is also detected on the fcc-Sn(111) surface, and the size of superconducting gap on the Sn surface is nearly the same as that on the superconducting substrate. Furthermore, phase transition occurs from fcc-Sn(111) to $\beta$-Sn(001) by keeping the sample at room temperature for a certain time. Due to the strain relaxation on the $\beta$-Sn islands, both the in-plane unit cell and out-of-plane structures distort, and the height of surface atoms varies periodically to form a universal ripple structure.
Received: 01 March 2018      Published: 19 May 2018
PACS:  68.35.B- (Structure of clean surfaces (and surface reconstruction))  
  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
Fund: Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0301003 and 2016YFA0300403, and the National Natural Science Foundation of China under Grant Nos 11521404, 11634009, U1632102, 11504230, 11674222, 11574202, 11674226, 11574201 and U1632272.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/6/066802       OR      https://cpl.iphy.ac.cn/Y2018/V35/I6/066802
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ai-Min Li
Lu-Dong
Xin-Yi Yang
Zhen Zhu
Guan-Yong Wang
Dan-Dan Guan
Hao Zheng
Yao-Yi Li
Canhua Liu
Dong Qian
Jin-Feng Jia
[1]Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[2]Qi X L and Zhang S C 2010 Phys. Today 63 33
[3]Moore J E 2010 Nature 464 194
[4]Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[5]Zhang J M, Ming W M, Huang Z G, Liu G B, Kou X F, Fan Y B, Wang K L and Yao Y G 2013 Phys. Rev. B 88 235131
[6]Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[7]Wang M X, Liu C H, Xu J P, Yang F, Miao L, Yao M Y et al 2012 Science 336 52
[8]Xu J P, Liu C H, Wang M X, Ge J F, Liu Z L et al 2014 Phys. Rev. Lett. 112 217001
[9]Xu J P, Wang M X, Liu Z L, Ge J F, Yang X J et al 2015 Phys. Rev. Lett. 114 017001
[10]Sun H H, Zhang K W, Hu L H, Li C, Wang G Y et al 2016 Phys. Rev. Lett. 116 257003
[11]Konig M, Wiedmann S, Brune C, Roth A, Buhmann H et al 2007 Science 318 766
[12]He Q L, Pan L, Stern A L, Burks E C, Che X Y et al 2017 Science 357 294
[13]Xu Y, Yan B H, Zhang H J, Wang J, Xu G, Tang P Z, Duan W H and Zhang S C 2013 Phys. Rev. Lett. 111 136804
[14]Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D et al 2015 Nat. Mater. 14 1020
[15]Xu C Z, Chan Y H, Chen Y G, Chen P, Wang X X et al 2017 Phys. Rev. Lett. 118 146402
[16]Sun H H, Wang M X, Zhu F F, Wang G Y, Ma H Y et al 2017 Nano Lett. 17 3035
[17]Roldan Cuenya B, Doi M and Keune W 2002 Surf. Sci. 506 33
[18]Didschuns I, Fleischer K, Schilbe P, Esser N, Richter W and Luders K 2002 Physica C 377 89
[19]Fecht H J, Zhang M X, Chang Y A and Perepezko J H 1989 Metall. Trans. A 20 795
[20]Luo Q, Yi F L, Zhang Q, Tang B, Qiu Y and Rang Z L 2015 J. At. Mol. Phys. 32 153 (in Chinese)
[21]Oura K, Lifshits V G, Saranin A A, Zotov A V and Katayama M 2003 Surf. Sci. (Berlin: Springer) chap 14 p 357
[22]Hess H F, Robinson R B, Dynes R C, Valles J M, Jr and Waszczak J V 1989 Phys. Rev. Lett. 62 214
[23]Xing Y, Zhao K, Shan P J Zheng F P, Zhang Y W et al 2017 Nano Lett. 17 6802
[24]Wang L L, Ma X C, Ning Y X, Ji X H, Fu Y S, Jia J F, Kelly K F and Xue Q K 2009 Appl. Phys. Lett. 94 153111
Related articles from Frontiers Journals
[1] Xin-Yi Yang, Guan-Yong Wang, Chen-Xiao Zhao, Zhen Zhu, Lu Dong, Ai-Min Li, Yang-Yang Lv, Shu-Hua Yao, Yan-Bin Chen, Dan-Dan Guan, Yao-Yi Li, Hao Zheng, Dong Qian, Canhua Liu, Yu-Lin Chen, Jin-Feng Jia. Surface Structure and Reconstructions of HgTe (111) Surfaces[J]. Chin. Phys. Lett., 2018, 35(2): 066802
[2] HE Xiao-Min, CHEN Zhi-Ming, LI Lian-Bi. Relaxation of 6H-SiC (0001) Surface and Si Adsorption on 6H-SiC (0001): an ab initio Study[J]. Chin. Phys. Lett., 2015, 32(03): 066802
[3] LIU Xiao-Juan, CAO Wen-Qiang, HUANG Zi-Han, YUAN Jie, FANG Xiao-Yong, CAO Mao-Sheng. Electronic Structures and Adsorption of Li-Doped Graphenes for CO[J]. Chin. Phys. Lett., 2015, 32(03): 066802
[4] ZHANG Yun, YU Ying-Hui**, SHE Li-Min, QIN Zhi-Hui, CAO Geng-Yu . Imaging of the Al Structure of an Ultrathin Alumina Film Grown on Cu-9 at.%Al(111) by STM[J]. Chin. Phys. Lett., 2011, 28(6): 066802
[5] XU Run**, TANG Min-Yan, ZHU Yan-Yan, WANG Lin-Jun . Epitaxial Growth of Si(111)/Er2O3 (111) Structure on Si(111) by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2011, 28(3): 066802
[6] WANG Na, ZHANG Wen-Di, XU Ji-Peng, MA Bin, ZHANG Zong-Zhi, JIN Qing-Yuan, E. Bunte, J. Hüpkes, H. P. Bochem. Fabrication of Anodic Aluminum Oxide Templates with Small Interpore Distances[J]. Chin. Phys. Lett., 2010, 27(6): 066802
[7] TANG Yi-Zhe, ZHENG Zhi-Jun, XIA Meng-Fen, BAI Yi-Long. A Unified Guide to Two Opposite Size Effects in Nano Elastic Materials[J]. Chin. Phys. Lett., 2009, 26(12): 066802
Viewed
Full text


Abstract