Chin. Phys. Lett.  2018, Vol. 35 Issue (6): 067101    DOI: 10.1088/0256-307X/35/6/067101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons
Yang Liu, Cai-Juan Xia**, Bo-Qun Zhang, Ting-Ting Zhang, Yan Cui, Zhen-Yang Hu
School of Science, Xi'an Polytechnic University, Xi'an 710048
Cite this article:   
Yang Liu, Cai-Juan Xia, Bo-Qun Zhang et al  2018 Chin. Phys. Lett. 35 067101
Download: PDF(890KB)   PDF(mobile)(877KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The electronic transport properties of a molecular junction based on doping tailoring armchair-type graphene nanoribbons (AGNRs) with different widths are investigated by applying the non-equilibrium Green's function formalism combined with first-principles density functional theory. The calculated results show that the width and doping play significant roles in the electronic transport properties of the molecular junction. A higher current can be obtained for the molecular junctions with the tailoring AGNRs with $W=11$. Furthermore, the current of boron-doped tailoring AGNRs with widths $W=7$ is nearly four times larger than that of the undoped one, which can be potentially useful for the design of high performance electronic devices.
Received: 22 January 2018      Published: 19 May 2018
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  85.65.+h (Molecular electronic devices)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11004156 and 11547172, and the Science and Technology Star Project of Shaanxi Province under Grant No 2016KJXX-45.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/6/067101       OR      https://cpl.iphy.ac.cn/Y2018/V35/I6/067101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yang Liu
Cai-Juan Xia
Bo-Qun Zhang
Ting-Ting Zhang
Yan Cui
Zhen-Yang Hu
[1]Husain M M and Kumar M 2015 Org. Electron. 27 92
[2]Ji G M, Li D M, Fang C F, Xu Y Q, Zhai Y X, Cui B and Liu D S 2012 Phys. Lett. A 376 773
[3]Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N and Heer W A D 2006 Science 312 1191
[4]Du X, Skachko I, Barker A and Andrei E Y 2008 Nat. Nanotechnol. 3 491
[5]Orlita M, Faugeras C, Plochocka P, Neugebauer P, Martinez G, Maude D K, Barra A L, Sprinkle M, Berger C, Heer W A D and Potemski M 2008 Phys. Rev. Lett. 101 267601
[6]Neugebauer P, Orlita M, Faugeras C, Barra A L and Potemski M 2009 Phys. Rev. Lett. 103 159902
[7]Ahmed S and Yi J B 2017 Nano-Micro Lett. 9 699
[8]Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[9]Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stromer H L, Zeitler U, Maan J C, Boebinger G S, Kim P and Geim A K 2007 Science 315 1379
[10]Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubbnos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[11]Han M Y, Özyilmaz B, Zhang Y B and Kim P 2007 Phys. Rev. Lett. 98 206805
[12]Niimi Y, Matsui T, Kambara H, Tagami K, Tsukada M and Fukuyama H 2006 Phys. Rev. B 73 085421
[13]Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 17954
[14]Chen Y P, Xie Y E and Yan X H 2008 J. Appl. Phys. 103 063711
[15]Zheng H X, Wang Z F, Luo T, Shi Q W and Chen J 2007 Phys. Rev. B 75 165414
[16]Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[17]Cai Y Q, Zhang A H, Feng A P and Feng Y P 2011 J. Chem. Phys. 135 184703
[18]Long M Q, Tang L, Wang D, Wang L J and Shuai Z G 2009 J. Am. Chem. Soc. 131 17728
[19]Xie L, Chen S Z, Zhou W X and Chen K Q 2017 Org. Electron. 46 150
[20]Xie F, Fan Z Q, Liu K, Wang H Y, Yu J H and Chen K Q 2015 Org. Electron. 27 41
[21]He J and Chen K Q 2012 J. Appl. Phys. 112 114319
[22]Zeng J and Chen K Q 2015 J. Mater. Chem. C 3 5697
[23]Song Y, Xie Z, Zhang G P, Ma Y and Wang C K 2013 J. Phys. Chem. C 117 20951
[24]Ye M, Xia C J, Yang A Y, Zhang B Q, Su Y H, Tu Z Y and Ma Y 2017 Chin. Phys. Lett. 34 117101
[25]Huang J, Xu K, Lei S L, Su H B, Yang S F, Li Q X and Yang J L 2012 J. Chem. Phys. 136 064707
[26]Song Y, Xie Z, Ma Y, Li Z L and Wang C K 2014 J. Phys. Chem. C 118 18713
[27]Zhang D H, Yao K L and Gao G Y 2011 J. Appl. Phys. 110 013718
[28]Ren H, Li Q X, Luo Y and Yang J L 2009 Appl. Phys. Lett. 94 173110
[29]Zhao P, Liu D S, Li S J and Chen G 2013 Phys. Lett. A 377 1134
[30]Zhu S C, Yao K L, Gao G Y and Ni Y 2013 Solid State Commun. 155 40
[31]Solís-Fernández P, Okada S, Sato T, Tsuji M and Ago H 2016 ACS Nano 10 2930
[32]Xu J, Jang S K, Lee J, Song Y J and Lee S 2014 J. Phys. Chem. C 118 22268
[33]Guo X S, Lu B A and Xie E Q 2011 Chin. Phys. Lett. 28 076803
[34]Błoníski P, Tuček J, Sofer Z, Mazaínek V, Petr M, Pumera M, Otyepka M and Zbořil R 2017 J. Am. Chem. Soc. 139 3171
[35]Yang R, Zhang L C, Wang Y, Shi Z W, Shi D X, Gao H J, Wang E G and Zhang G Y 2010 Adv. Mater. 22 4014
[36]Jin C H, Lan H P, Peng L M, Suenaga K and Iijima S 2009 Phys. Rev. Lett. 102 205501
[37]Li X L, Wang X R, Zhang L, Lee S and Dai G J 2008 Science 319 1229
[38]Zhang C Z, Mahmood N, Yin H, Liu F and Hou Y L 2013 Adv. Mater. 25 4932
[39]Zheng Y, Jiao Y, Ge L, Jaroniec M and Qiao S Z 2013 Angew. Chem. 125 3192
[40]Zeng J, Chen K Q, He J, Fan Z Q and Zhang X J 2011 J. Appl. Phys. 109 124502
[41]Atomistix Toolkit version 2008 02. Quantum Wise A/S (www.quantumwise.com)
[42]Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[43]Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407
[44]Buttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 067101
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 067101
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 067101
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 067101
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 067101
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 067101
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 067101
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 067101
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 067101
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 067101
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 067101
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 067101
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 067101
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 067101
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 067101
Viewed
Full text


Abstract