CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons |
Yang Liu, Cai-Juan Xia**, Bo-Qun Zhang, Ting-Ting Zhang, Yan Cui, Zhen-Yang Hu |
School of Science, Xi'an Polytechnic University, Xi'an 710048
|
|
Cite this article: |
Yang Liu, Cai-Juan Xia, Bo-Qun Zhang et al 2018 Chin. Phys. Lett. 35 067101 |
|
|
Abstract The electronic transport properties of a molecular junction based on doping tailoring armchair-type graphene nanoribbons (AGNRs) with different widths are investigated by applying the non-equilibrium Green's function formalism combined with first-principles density functional theory. The calculated results show that the width and doping play significant roles in the electronic transport properties of the molecular junction. A higher current can be obtained for the molecular junctions with the tailoring AGNRs with $W=11$. Furthermore, the current of boron-doped tailoring AGNRs with widths $W=7$ is nearly four times larger than that of the undoped one, which can be potentially useful for the design of high performance electronic devices.
|
|
Received: 22 January 2018
Published: 19 May 2018
|
|
PACS: |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
85.65.+h
|
(Molecular electronic devices)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11004156 and 11547172, and the Science and Technology Star Project of Shaanxi Province under Grant No 2016KJXX-45. |
|
|
[1] | Husain M M and Kumar M 2015 Org. Electron. 27 92 | [2] | Ji G M, Li D M, Fang C F, Xu Y Q, Zhai Y X, Cui B and Liu D S 2012 Phys. Lett. A 376 773 | [3] | Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N and Heer W A D 2006 Science 312 1191 | [4] | Du X, Skachko I, Barker A and Andrei E Y 2008 Nat. Nanotechnol. 3 491 | [5] | Orlita M, Faugeras C, Plochocka P, Neugebauer P, Martinez G, Maude D K, Barra A L, Sprinkle M, Berger C, Heer W A D and Potemski M 2008 Phys. Rev. Lett. 101 267601 | [6] | Neugebauer P, Orlita M, Faugeras C, Barra A L and Potemski M 2009 Phys. Rev. Lett. 103 159902 | [7] | Ahmed S and Yi J B 2017 Nano-Micro Lett. 9 699 | [8] | Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201 | [9] | Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stromer H L, Zeitler U, Maan J C, Boebinger G S, Kim P and Geim A K 2007 Science 315 1379 | [10] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubbnos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 | [11] | Han M Y, Özyilmaz B, Zhang Y B and Kim P 2007 Phys. Rev. Lett. 98 206805 | [12] | Niimi Y, Matsui T, Kambara H, Tagami K, Tsukada M and Fukuyama H 2006 Phys. Rev. B 73 085421 | [13] | Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 17954 | [14] | Chen Y P, Xie Y E and Yan X H 2008 J. Appl. Phys. 103 063711 | [15] | Zheng H X, Wang Z F, Luo T, Shi Q W and Chen J 2007 Phys. Rev. B 75 165414 | [16] | Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803 | [17] | Cai Y Q, Zhang A H, Feng A P and Feng Y P 2011 J. Chem. Phys. 135 184703 | [18] | Long M Q, Tang L, Wang D, Wang L J and Shuai Z G 2009 J. Am. Chem. Soc. 131 17728 | [19] | Xie L, Chen S Z, Zhou W X and Chen K Q 2017 Org. Electron. 46 150 | [20] | Xie F, Fan Z Q, Liu K, Wang H Y, Yu J H and Chen K Q 2015 Org. Electron. 27 41 | [21] | He J and Chen K Q 2012 J. Appl. Phys. 112 114319 | [22] | Zeng J and Chen K Q 2015 J. Mater. Chem. C 3 5697 | [23] | Song Y, Xie Z, Zhang G P, Ma Y and Wang C K 2013 J. Phys. Chem. C 117 20951 | [24] | Ye M, Xia C J, Yang A Y, Zhang B Q, Su Y H, Tu Z Y and Ma Y 2017 Chin. Phys. Lett. 34 117101 | [25] | Huang J, Xu K, Lei S L, Su H B, Yang S F, Li Q X and Yang J L 2012 J. Chem. Phys. 136 064707 | [26] | Song Y, Xie Z, Ma Y, Li Z L and Wang C K 2014 J. Phys. Chem. C 118 18713 | [27] | Zhang D H, Yao K L and Gao G Y 2011 J. Appl. Phys. 110 013718 | [28] | Ren H, Li Q X, Luo Y and Yang J L 2009 Appl. Phys. Lett. 94 173110 | [29] | Zhao P, Liu D S, Li S J and Chen G 2013 Phys. Lett. A 377 1134 | [30] | Zhu S C, Yao K L, Gao G Y and Ni Y 2013 Solid State Commun. 155 40 | [31] | Solís-Fernández P, Okada S, Sato T, Tsuji M and Ago H 2016 ACS Nano 10 2930 | [32] | Xu J, Jang S K, Lee J, Song Y J and Lee S 2014 J. Phys. Chem. C 118 22268 | [33] | Guo X S, Lu B A and Xie E Q 2011 Chin. Phys. Lett. 28 076803 | [34] | Błoníski P, Tuček J, Sofer Z, Mazaínek V, Petr M, Pumera M, Otyepka M and Zbořil R 2017 J. Am. Chem. Soc. 139 3171 | [35] | Yang R, Zhang L C, Wang Y, Shi Z W, Shi D X, Gao H J, Wang E G and Zhang G Y 2010 Adv. Mater. 22 4014 | [36] | Jin C H, Lan H P, Peng L M, Suenaga K and Iijima S 2009 Phys. Rev. Lett. 102 205501 | [37] | Li X L, Wang X R, Zhang L, Lee S and Dai G J 2008 Science 319 1229 | [38] | Zhang C Z, Mahmood N, Yin H, Liu F and Hou Y L 2013 Adv. Mater. 25 4932 | [39] | Zheng Y, Jiao Y, Ge L, Jaroniec M and Qiao S Z 2013 Angew. Chem. 125 3192 | [40] | Zeng J, Chen K Q, He J, Fan Z Q and Zhang X J 2011 J. Appl. Phys. 109 124502 | [41] | Atomistix Toolkit version 2008 02. Quantum Wise A/S (www.quantumwise.com) | [42] | Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401 | [43] | Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407 | [44] | Buttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|