Chin. Phys. Lett.  2018, Vol. 35 Issue (6): 067102    DOI: 10.1088/0256-307X/35/6/067102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Tuning the Heavy Fermion State of CeFeGe$_{3}$ by Ru Doping
Xin-Bei Xia1, Bin Shen1, Michael Smidman1, Ye Chen1, Hanoh Lee1,2, Hui-Qiu Yuan1,3**
1Center for Correlated Matter and Department of Physics, Zhejiang University, Hangzhou 310058
2Department of Physics, Sungkyunkwan University, Suwon 440-746, South Korea
3Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093
Cite this article:   
Xin-Bei Xia, Bin Shen, Michael Smidman et al  2018 Chin. Phys. Lett. 35 067102
Download: PDF(906KB)   PDF(mobile)(897KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We successfully synthesize a series of polycrystalline CeRu$_{x}$Fe$_{1-x}$Ge$_{3}$ ($0\leq x\leq 0.5$) samples, which are characterized using powder x-ray diffraction, resistivity and specific heat measurements. The expansion of the lattice constants with increasing $x$ demonstrates the successful doping of Ru into the CeFeGe$_{3}$ lattice. Upon doping, it is found that the temperature up to which Landau–Fermi liquid behavior is observed in the resistivity is reduced. Meanwhile, there is also a pronounced increase in the resistivity coefficient and residual resistivity, as well as a clear upturn in $C/T$ at low temperatures, suggesting that Ru doping may tune the system towards a quantum critical point.
Received: 26 March 2018      Published: 19 May 2018
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  72.15.Qm (Scattering mechanisms and Kondo effect)  
  75.40.-s (Critical-point effects, specific heats, short-range order)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11474251, 11604291 and U1632275, the National Key Research and Development Program of China under Grant Nos 2017YFA0303100 and 2016YFA0300202, and the Science Challenge Project of China under Grant No TZ2016004.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/6/067102       OR      https://cpl.iphy.ac.cn/Y2018/V35/I6/067102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xin-Bei Xia
Bin Shen
Michael Smidman
Ye Chen
Hanoh Lee
Hui-Qiu Yuan
[1]Hewson A C 1939 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University)
[2]Doniach S 1977 Physica B+C 91 231
[3]von Löhneysen H, Pietrus T, Portish G, Schlager H, Schröder A, Sieck M and Trappmann T 1994 Phys. Rev. Lett. 72 3262
[4]Trovarelli O, Geibel C, Mederle S, Langhammer C, Grosche F M, Gegenwart P, Lang M, Sparn G and Steglich F 2000 Phys. Rev. Lett. 85 626
[5]Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W and Lonzarich G G 1998 Nature 394 39
[6]Hegger H, Petrovic C, Moshopoulou E G, Hundley M F, Sarrao J L, Fisk Z and Thompson J D 2000 Phys. Rev. Lett. 84 4986
[7]Nakatsuji S, Kuga K, Machida Y, Tayama T, Sakakibara T, Karaki Y, Ishimoto H, Yonezawa S, Maeno Y, Pearson E, Lonzarich G G, Balicas L, Lee H and Fisk Z 2008 Nat. Phys. 4 603
[8]Weng Z F, Smidman M, Jiao L, Lu X and Yuan H Q 2016 Rep. Prog. Phys. 79 094503
[9]Muro Y, Eom D, Takeda N and Ishikawa M 1998 J. Phys. Soc. Jpn. 67 3601
[10]Pecharsky V K, Hyun O B and Gschneidner K A 1993 Phys. Rev. B 47 11839
[11]Paschen S, Felder E and Ott H R 1998 Eur. Phys. J. B 2 169
[12]Bauer E, Pillmayr N, Gratz E, Hilscher G, Gignoux D and Schmitt D 1987 Z. Phys. B 67 205
[13]Liu Q, Shen B, Smidman M, Li R, Nie Z Y, Xiao X Y, Lee H and Yuan H Q 2018 Sci. Chin.-Phys. Mech. Astron. 61 077411
[14]Kimura N, Ito K, Saitoh K, Umeda Y, Aoki H and Terashima T 2005 Phys. Rev. Lett. 95 247004
[15]Sugitani I, Okuda Y, Shishido H, Yamada T, Thamizhavel A, Yamamoto E, Matsuda T D, Haga Y, Takeuchi T, Settai R and Ōnuki Y 2006 J. Phys. Soc. Jpn. 75 043703
[16]Kawai T, Muranaka H, Measson M A, Shimodai T, Doi Y, Matsuda T D, Haga Y, Knebel G, Lapertot G, Aoki D, Flouquet J, Takeuchi T, Settai R and Ōnuki Y 2008 J. Phys. Soc. Jpn. 77 064716
[17]Smidman M, Adroja D T, Goremychkin E A, Paul D M and Balakrishnan G 2015 Phys. Rev. B 91 064419
[18]Yamamoto H, Ishikawa M, Hasegawa K and Sakurai J 1995 Phys. Rev. B 52 10136
[19]de Medeiros S N, Bud'ko S L, Fontes M B, Continentino M A and Baggio-Saitovitch E M 2001 J. Magn. Magn. Mater. 226 152
[20]Alamakha P S, Konyk M B and Sologub O L 1996 J. Alloys Compd. 234 151
[21]Tsujii N, Kontani H and Yoshimura K 2005 Phys. Rev. Lett. 94 057201
[22]Kimura N, Muro Y and Aoki H 2007 J. Phys. Soc. Jpn. 76 051010
[23]Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y, Trovarelli O, Geibel C, Steglich F, Pépin C and Coleman P 2003 Nature 424 524
[24]Kambe S, Flouquet J, Haen P and Lejay P 1996 J. Low Temp. Phys. 102 477
Related articles from Frontiers Journals
[1] Miao Xu, Changwei Zou, Benchao Gong, Ke Jia, Shusen Ye, Zhenqi Hao, Kai Liu, Youguo Shi, Zhong-Yi Lu, Peng Cai, and Yayu Wang. Tuning the Mottness in Sr$_{3}$Ir$_{2}$O$_{7}$ via Bridging Oxygen Vacancies[J]. Chin. Phys. Lett., 2023, 40(3): 067102
[2] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 067102
[3] Kun Jiang. Correlation Renormalized and Induced Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2023, 40(1): 067102
[4] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$[J]. Chin. Phys. Lett., 2022, 39(12): 067102
[5] Neng Xie, Danqing Hu, Shu Chen, and Yi-feng Yang. Evolution of Topological End States in the One-Dimensional Kondo–Heisenberg Model with Site Modulation[J]. Chin. Phys. Lett., 2022, 39(11): 067102
[6] Xingyu Wang, Dongliang Gong, Bo Liu, Xiaoyan Ma, Jinyu Zhao, Pengyu Wang, Yutao Sheng, Jing Guo, Liling Sun, Wen Zhang, Xinchun Lai, Shiyong Tan, Yi-feng Yang, and Shiliang Li. In-Plane Anisotropic Response to Uniaxial Pressure in the Hidden Order State of URu$_2$Si$_2$[J]. Chin. Phys. Lett., 2022, 39(10): 067102
[7] Y. E. Huang, F. Wu, A. Wang, Y. Chen, L. Jiao, M. Smidman, and H. Q. Yuan. Pressure Evolution of the Magnetism and Fermi Surface of YbPtBi Probed by a Tunnel Diode Oscillator Based Method[J]. Chin. Phys. Lett., 2022, 39(9): 067102
[8] Yunchao Hao, Gaopei Pan, Kai Sun, Zi Yang Meng, and Yang Qi. Superconductivity near the (2+1)-Dimensional Ferromagnetic Quantum Critical Point[J]. Chin. Phys. Lett., 2022, 39(9): 067102
[9] Jian-Keng Yuan, Shuai A. Chen, and Peng Ye. Quantum Hydrodynamics of Fractonic Superfluids with Lineon Condensate: From Navier–Stokes-Like Equations to Landau-Like Criterion[J]. Chin. Phys. Lett., 2022, 39(5): 067102
[10] Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Ya-Dong Gu, Ming-Wei Ma, Gen-Fu Chen, and Zhi-An Ren. Superconductivity with a Violation of Pauli Limit and Evidences for Multigap in $\eta$-Carbide Type Ti$_4$Ir$_2$O[J]. Chin. Phys. Lett., 2022, 39(2): 067102
[11] Haiwei Li, Shusen Ye, Jianfa Zhao, Changqing Jin, and Yayu Wang. Temperature Dependence of the Electronic Structure of Ca$_{3}$Cu$_{2}$O$_{4}$Cl$_{2}$ Mott Insulator[J]. Chin. Phys. Lett., 2022, 39(1): 067102
[12] Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Shangjie Tian, and Hechang Lei. Structures and Physical Properties of V-Based Kagome Metals CsV$_{6}$Sb$_{6}$ and CsV$_{8}$Sb$_{12}$[J]. Chin. Phys. Lett., 2021, 38(12): 067102
[13] Yunqing Ouyang, Qing-Rui Wang, Zheng-Cheng Gu, and Yang Qi. Computing Classification of Interacting Fermionic Symmetry-Protected Topological Phases Using Topological Invariants[J]. Chin. Phys. Lett., 2021, 38(12): 067102
[14] Chuang Xie, Ling Hu, Ran-Ran Zhang, Shun-Jin Zhu, Min Zhu, Ren-Huai Wei, Xian-Wu Tang, Wen-Hai Song, Xue-Bin Zhu, and Yu-Ping Sun. Concurrent Structural and Electronic Phase Transitions in V$_2$O$_3$ Thin Films with Sharp Resistivity Change[J]. Chin. Phys. Lett., 2021, 38(7): 067102
[15] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 067102
Viewed
Full text


Abstract