CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Charge Density Wave States in 2H-MoTe$_{2}$ Revealed by Scanning Tunneling Microscopy |
Lu Dong1, Guan-Yong Wang1, Zhen Zhu1, Chen-Xiao Zhao1, Xin-Yi Yang1, Ai-Min Li1, Jing-Lei Chen2, Dan-Dan Guan1,3, Yao-Yi Li1,3, Hao Zheng1,3, Mao-Hai Xie2, Jin-Feng Jia1,3** |
1Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 2Physics Department, The University of Hong Kong, Pokfulam Road, Hong Kong 3Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093
|
|
Cite this article: |
Lu Dong, Guan-Yong Wang, Zhen Zhu et al 2018 Chin. Phys. Lett. 35 066801 |
|
|
Abstract 2H- and 1T$'$-phase monolayer MoTe$_{2}$ films on highly oriented pyrolytic graphite are studied using scanning tunneling microscopy and spectroscopy (STM/STS). The phase transition of MoTe$_{2}$ can be controlled by a post-growth annealing process, and the intermediate state during the phase transition is directly observed by STM. For 2H-MoTe$_{2}$, inversion domain boundaries are presented as bright lines at high sample bias, but as dark lines at lower sample bias. The $dI/dV$ mappings reveal the distinct distributions of electronic states between domain boundaries and interiors of domains. It should be noted that a $2\times2$ periodic structure is clearly discernable inside the domains, where the STS measurement shows a small dip of size $\sim$150 meV at the vicinity of the Fermi level, indicating that the $2\times2$ periodic structure may be an incommensurate charge density wave. Moreover, a $4\times4$ periodic structure appears in 2H-MoTe$_{2}$ grown at a higher substrate temperature.
|
|
Received: 12 February 2018
Published: 19 May 2018
|
|
PACS: |
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
68.47.Fg
|
(Semiconductor surfaces)
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0301003 and 2016YFA0300403, and the National Natural Science Foundation of China under Grant Nos 11521404, 11634009, U1632102, 11504230, 11674222, 11574202, 11674226, 11574201 and U1632272. |
|
|
[1] | Zhu Z Y, Cheng Y C and Schwingenschlögl U 2011 Phys. Rev. B 84 153402 | [2] | Sun L, Yan J, Zhan D, Liu L, Hu H et al 2013 Phys. Rev. Lett. 111 126801 | [3] | Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV and Kis A 2017 Nat. Rev. Mater. 2 17033 | [4] | Zheng H, Bian G, Chang G, Lu H, Xu S Y et al 2016 Phys. Rev. Lett. 117 266804 | [5] | Dai J, Calleja E, Alldredge J, Zhu X, Li L et al 2014 Phys. Rev. B 89 165140 | [6] | Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y et al 2016 Nat. Phys. 12 92 | [7] | Barja S, Wickenburg S, Liu Z F, Zhang Y, Ryu H et al 2016 Nat. Phys. 12 751 | [8] | Yang H T, Tao H J and Zhao Z X 1998 Chin. Phys. Lett. 15 123 | [9] | Qi Y, Naumov P G, Ali M N, Rajamathi C R, Schnelle W et al 2016 Nat. Commun. 7 11038 | [10] | Pan X C, Chen X, Liu H, Feng Y, Wei Z et al 2015 Nat. Commun. 6 7805 | [11] | Kang D, Zhou Y, Wei Y, Yang C, Guo J et al 2015 Nat. Commun. 6 7804 | [12] | Qian X, Liu J, Fu L and Li J 2014 Science 346 1344 | [13] | Wilson J A and Yoffe A D 1969 Adv. Phys. 18 193 | [14] | Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M and Chhowalla M 2012 ACS Nano 6 7311 | [15] | Dawson W G and Bullett D W 1987 J. Phys. C 20 6159 | [16] | Tang S, Zhang C, Wong D, Pedramrazi Z, Tsai H Z et al 2017 Nat. Phys. 13 683 | [17] | Fei Z, Palomaki T, Wu S, Zhao W, Cai X et al 2017 Nat. Phys. 13 677 | [18] | Wu S, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 359 76 | [19] | Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271 | [20] | Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H et al 2013 Nat. Nanotechnol. 9 111 | [21] | Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805 | [22] | Baugher B W H, Churchill H O H, Yang Y and Jarillo-Herrero P 2013 Nano Lett. 13 4212 | [23] | Kang K, Xie S, Huang L, Han Y, Huang P Y et al 2015 Nature 520 656 | [24] | Geim A K and Grigorieva I V 2013 Nature 499 419 | [25] | Lee C H, Lee G H, Zande AM van der, Chen W, Li Y et al 2014 Nat. Nanotechnol. 9 676 | [26] | Kadir N A A, Ismail E I, Latiff A A, Ahmad H, Arof H and Harun S W 2017 Chin. Phys. Lett. 34 014202 | [27] | Chen J, Wang G, Tang Y, Tian H, Xu J et al 2017 ACS Nano 11 3282 | [28] | Naylor C H, Parkin W M, Ping J, Gao Z, Zhou Y R et al 2016 Nano Lett. 16 4297 | [29] | Yu Y, Wang G, Qin S, Wu N, Wang Z, He K and Zhang X A 2017 Carbon 115 526 | [30] | Qiu H, Xu T, Wang Z, Ren W, Nan H et al 2013 Nat. Commun. 4 2642 | [31] | Cai L, He J, Liu Q, Yao T, Chen L et al 2015 J. Am. Chem. Soc. 137 2622 | [32] | Bao W, Borys N J, Ko C, Suh J, Fan W et al 2015 Nat. Commun. 6 7993 | [33] | Zande AM van der, Huang P Y, Chenet D A, Berkelbach T C, You Y M et al 2013 Nat. Mater. 12 554 | [34] | Liu H, Jiao L, Yang F, Cai Y, Wu X et al 2014 Phys. Rev. Lett. 113 066105 | [35] | Núñez-Regueiro M D, Lopez-Castillo J M and Ayache C 1985 Phys. Rev. Lett. 55 1931 | [36] | Fu W, Chen Y, Lin J, Wang X, Zeng Q et al 2016 Chem. Mater. 28 7613 | [37] | Böker T, Severin R, Müller A, Janowitz C, Manzke R et al 2001 Phys. Rev. B 64 235305 | [38] | Qiao S, Li X, Wang N, Ruan W, Ye C et al 2017 Phys. Rev. X 7 041054 | [39] | Cho D, Cho Y H, Cheong S W, Kim K S and Yeom H W 2015 Phys. Rev. B 92 085132 | [40] | Jiao L, Liu H, Chen J, Yi Y, Chen W et al 2015 New J. Phys. 17 053023 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|