Chin. Phys. Lett.  2018, Vol. 35 Issue (6): 066801    DOI: 10.1088/0256-307X/35/6/066801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Charge Density Wave States in 2H-MoTe$_{2}$ Revealed by Scanning Tunneling Microscopy
Lu Dong1, Guan-Yong Wang1, Zhen Zhu1, Chen-Xiao Zhao1, Xin-Yi Yang1, Ai-Min Li1, Jing-Lei Chen2, Dan-Dan Guan1,3, Yao-Yi Li1,3, Hao Zheng1,3, Mao-Hai Xie2, Jin-Feng Jia1,3**
1Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240
2Physics Department, The University of Hong Kong, Pokfulam Road, Hong Kong
3Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093
Cite this article:   
Lu Dong, Guan-Yong Wang, Zhen Zhu et al  2018 Chin. Phys. Lett. 35 066801
Download: PDF(1132KB)   PDF(mobile)(1120KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract 2H- and 1T$'$-phase monolayer MoTe$_{2}$ films on highly oriented pyrolytic graphite are studied using scanning tunneling microscopy and spectroscopy (STM/STS). The phase transition of MoTe$_{2}$ can be controlled by a post-growth annealing process, and the intermediate state during the phase transition is directly observed by STM. For 2H-MoTe$_{2}$, inversion domain boundaries are presented as bright lines at high sample bias, but as dark lines at lower sample bias. The $dI/dV$ mappings reveal the distinct distributions of electronic states between domain boundaries and interiors of domains. It should be noted that a $2\times2$ periodic structure is clearly discernable inside the domains, where the STS measurement shows a small dip of size $\sim$150 meV at the vicinity of the Fermi level, indicating that the $2\times2$ periodic structure may be an incommensurate charge density wave. Moreover, a $4\times4$ periodic structure appears in 2H-MoTe$_{2}$ grown at a higher substrate temperature.
Received: 12 February 2018      Published: 19 May 2018
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  68.55.-a (Thin film structure and morphology)  
  73.20.-r (Electron states at surfaces and interfaces)  
  68.47.Fg (Semiconductor surfaces)  
Fund: Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0301003 and 2016YFA0300403, and the National Natural Science Foundation of China under Grant Nos 11521404, 11634009, U1632102, 11504230, 11674222, 11574202, 11674226, 11574201 and U1632272.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/6/066801       OR      https://cpl.iphy.ac.cn/Y2018/V35/I6/066801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lu Dong
Guan-Yong Wang
Zhen Zhu
Chen-Xiao Zhao
Xin-Yi Yang
Ai-Min Li
Jing-Lei Chen
Dan-Dan Guan
Yao-Yi Li
Hao Zheng
Mao-Hai Xie
Jin-Feng Jia
[1]Zhu Z Y, Cheng Y C and Schwingenschlögl U 2011 Phys. Rev. B 84 153402
[2]Sun L, Yan J, Zhan D, Liu L, Hu H et al 2013 Phys. Rev. Lett. 111 126801
[3]Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV and Kis A 2017 Nat. Rev. Mater. 2 17033
[4]Zheng H, Bian G, Chang G, Lu H, Xu S Y et al 2016 Phys. Rev. Lett. 117 266804
[5]Dai J, Calleja E, Alldredge J, Zhu X, Li L et al 2014 Phys. Rev. B 89 165140
[6]Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y et al 2016 Nat. Phys. 12 92
[7]Barja S, Wickenburg S, Liu Z F, Zhang Y, Ryu H et al 2016 Nat. Phys. 12 751
[8]Yang H T, Tao H J and Zhao Z X 1998 Chin. Phys. Lett. 15 123
[9]Qi Y, Naumov P G, Ali M N, Rajamathi C R, Schnelle W et al 2016 Nat. Commun. 7 11038
[10]Pan X C, Chen X, Liu H, Feng Y, Wei Z et al 2015 Nat. Commun. 6 7805
[11]Kang D, Zhou Y, Wei Y, Yang C, Guo J et al 2015 Nat. Commun. 6 7804
[12]Qian X, Liu J, Fu L and Li J 2014 Science 346 1344
[13]Wilson J A and Yoffe A D 1969 Adv. Phys. 18 193
[14]Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M and Chhowalla M 2012 ACS Nano 6 7311
[15]Dawson W G and Bullett D W 1987 J. Phys. C 20 6159
[16]Tang S, Zhang C, Wong D, Pedramrazi Z, Tsai H Z et al 2017 Nat. Phys. 13 683
[17]Fei Z, Palomaki T, Wu S, Zhao W, Cai X et al 2017 Nat. Phys. 13 677
[18]Wu S, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 359 76
[19]Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[20]Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H et al 2013 Nat. Nanotechnol. 9 111
[21]Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[22]Baugher B W H, Churchill H O H, Yang Y and Jarillo-Herrero P 2013 Nano Lett. 13 4212
[23]Kang K, Xie S, Huang L, Han Y, Huang P Y et al 2015 Nature 520 656
[24]Geim A K and Grigorieva I V 2013 Nature 499 419
[25]Lee C H, Lee G H, Zande AM van der, Chen W, Li Y et al 2014 Nat. Nanotechnol. 9 676
[26]Kadir N A A, Ismail E I, Latiff A A, Ahmad H, Arof H and Harun S W 2017 Chin. Phys. Lett. 34 014202
[27]Chen J, Wang G, Tang Y, Tian H, Xu J et al 2017 ACS Nano 11 3282
[28]Naylor C H, Parkin W M, Ping J, Gao Z, Zhou Y R et al 2016 Nano Lett. 16 4297
[29]Yu Y, Wang G, Qin S, Wu N, Wang Z, He K and Zhang X A 2017 Carbon 115 526
[30]Qiu H, Xu T, Wang Z, Ren W, Nan H et al 2013 Nat. Commun. 4 2642
[31]Cai L, He J, Liu Q, Yao T, Chen L et al 2015 J. Am. Chem. Soc. 137 2622
[32]Bao W, Borys N J, Ko C, Suh J, Fan W et al 2015 Nat. Commun. 6 7993
[33]Zande AM van der, Huang P Y, Chenet D A, Berkelbach T C, You Y M et al 2013 Nat. Mater. 12 554
[34]Liu H, Jiao L, Yang F, Cai Y, Wu X et al 2014 Phys. Rev. Lett. 113 066105
[35]Núñez-Regueiro M D, Lopez-Castillo J M and Ayache C 1985 Phys. Rev. Lett. 55 1931
[36]Fu W, Chen Y, Lin J, Wang X, Zeng Q et al 2016 Chem. Mater. 28 7613
[37]Böker T, Severin R, Müller A, Janowitz C, Manzke R et al 2001 Phys. Rev. B 64 235305
[38]Qiao S, Li X, Wang N, Ruan W, Ye C et al 2017 Phys. Rev. X 7 041054
[39]Cho D, Cho Y H, Cheong S W, Kim K S and Yeom H W 2015 Phys. Rev. B 92 085132
[40]Jiao L, Liu H, Chen J, Yi Y, Chen W et al 2015 New J. Phys. 17 053023
Related articles from Frontiers Journals
[1] Miao Xu, Changwei Zou, Benchao Gong, Ke Jia, Shusen Ye, Zhenqi Hao, Kai Liu, Youguo Shi, Zhong-Yi Lu, Peng Cai, and Yayu Wang. Tuning the Mottness in Sr$_{3}$Ir$_{2}$O$_{7}$ via Bridging Oxygen Vacancies[J]. Chin. Phys. Lett., 2023, 40(3): 066801
[2] Hexu Zhang, Yuanhao Lyu, Wenqi Hu, Lan Chen, Yi-Qi Zhang, and Kehui Wu. Dehydrogenation Induced Formation of Chiral Core-Shell Arrays of Melamine on Ag(111)[J]. Chin. Phys. Lett., 2022, 39(11): 066801
[3] Shiwei Shen, Tian Qin, Jingjing Gao, Chenhaoping Wen, Jinghui Wang, Wei Wang, Jun Li, Xuan Luo, Wenjian Lu, Yuping Sun, and Shichao Yan. Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor[J]. Chin. Phys. Lett., 2022, 39(7): 066801
[4] Chaofei Liu and Jian Wang. Spectroscopic Evidence for Electron Correlations in Epitaxial Bilayer Graphene with Interface-Reconstructed Superlattice Potentials[J]. Chin. Phys. Lett., 2022, 39(7): 066801
[5] Xiaoxia Li, Qili Li, Tongzhou Ji, Ruige Yan, Wenlin Fan, Bingfeng Miao, Liang Sun, Gong Chen, Weiyi Zhang, and Haifeng Ding. Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties[J]. Chin. Phys. Lett., 2022, 39(5): 066801
[6] Jia-Qi Guan, Li Wang, Pengdong Wang, Wei Ren, Shuai Lu, Rong Huang, Fangsen Li, Can-Li Song, Xu-Cun Ma, and Qi-Kun Xue. Honeycomb Lattice in Metal-Rich Chalcogenide Fe$_{2}$Te[J]. Chin. Phys. Lett., 2021, 38(11): 066801
[7] Xuedong Xie, Dongjing Lin, Li Zhu, Qiyuan Li, Junyu Zong, Wang Chen, Qinghao Meng, Qichao Tian, Shao-Chun Li, Xiaoxiang Xi, Can Wang, and Yi Zhang. Charge Density Wave and Electron-Phonon Interaction in Epitaxial Monolayer NbSe$_{2}$ Films[J]. Chin. Phys. Lett., 2021, 38(10): 066801
[8] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 066801
[9] Changyuan Zhou , Dezhi Song , Yeping Jiang, and Jun Zhang . Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film[J]. Chin. Phys. Lett., 2021, 38(5): 066801
[10] Ze-Rui Wang, Chen-Xiao Zhao, Guan-Yong Wang, Jin Qin, Bing Xia, Bo Yang, Dan-dan Guan, Shi-Yong Wang, Hao Zheng, Yao-Yi Li, Can-hua Liu, and Jin-Feng Jia. Controllable Modulation to Quantum Well States on $\beta$-Sn Islands[J]. Chin. Phys. Lett., 2020, 37(9): 066801
[11] Shuo Yang, Zhenpeng Hu, Weihai Wang, Peng Cheng, Lan Chen, and Kehui Wu. Regular Arrangement of Two-Dimensional Clusters of Blue Phosphorene on Ag(111)[J]. Chin. Phys. Lett., 2020, 37(9): 066801
[12] Qian-Qian Yuan, Zhaopeng Guo, Zhi-Qiang Shi, Hui Zhao, Zhen-Yu Jia, Qianjin Wang, Jian Sun, Di Wu, and Shao-Chun Li. Ferromagnetic MnSn Monolayer Epitaxially Grown on Silicon Substrate[J]. Chin. Phys. Lett., 2020, 37(7): 066801
[13] Xuguang Wang, Bingyu Xia, Jian Gou, Peng Cheng, Yong Xu, Lan Chen, Kehui Wu. Symmetry Breaking and Reversible Hydrogenation of Two-Dimensional Semiconductor Sn$_{2}$Bi[J]. Chin. Phys. Lett., 2020, 37(6): 066801
[14] Xuguang Wang, Bingyu Xia, Jian Gou, Peng Cheng, Yong Xu, Lan Chen, Kehui Wu. Symmetry Breaking and Reversible Hydrogenation of Two-Dimensional Semiconductor Sn$_{2}$Bi *[J]. Chin. Phys. Lett., 0, (): 066801
[15] An-Ning Dong, Li-Huan Sun, Xiang-Qian Tang, Yi-Kun Yao, Yang An, Dong Hao, Xin-Yan Shan, Xing-Hua Lu. Observation of Simplest Water Chains on Surface Stabilized by a Hydroxyl Group at One End[J]. Chin. Phys. Lett., 2019, 36(11): 066801
Viewed
Full text


Abstract