Chin. Phys. Lett.  2018, Vol. 35 Issue (4): 045201    DOI: 10.1088/0256-307X/35/4/045201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Extraordinary Electromagnetic Waves in Weakly Relativistic Degenerate Spin-1/2 Magnetized Quantum Plasmas
Chun-Hua Li1, Shao-Wei Wang1, Yun-Hao Liu1, Zhen-Wei Xia2, Xiao-Hui Zhang1, Dan-Dan Zou3**
1Department of Information Engineering, Hefei University of Technology, Hefei 230009
2School of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046
3School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013
Cite this article:   
Chun-Hua Li, Shao-Wei Wang, Yun-Hao Liu et al  2018 Chin. Phys. Lett. 35 045201
Download: PDF(564KB)   PDF(mobile)(560KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By using the relativistic quantum magnetohydrodynamic model, the extraordinary electromagnetic waves in magnetized quantum plasmas are investigated with the effects of particle dispersion associated with the quantum Bohm potential effects, the electron spin-1/2 effects, and the relativistic degenerate pressure effects. The electrons are treated as a quantum and magnetized species, while the ions are classical ones. The new general dispersion relations are derived and analyzed in some interesting special cases. Quantum effects are shown to affect the dispersion relations of the extraordinary electromagnetic waves. It is also shown that the relativistic degenerate pressure effects significantly modify the dispersive properties of the extraordinary electromagnetic waves. The present investigation should be useful for understanding the collective interactions in dense astrophysical bodies, such as the atmosphere of neutron stars and the interior of massive white dwarfs.
Received: 08 November 2017      Published: 13 March 2018
PACS:  52.35.Hr (Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))  
  82.20.Xr (Quantum effects in rate constants (tunneling, resonances, etc.))  
  52.27.Ny (Relativistic plasmas)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11705043, 11547137 and 11605036, the Innovation Training Project for College Students in Anhui Province under Grant No 2017CXCYS222, the Doctoral Production & Learning & Research Special Fund of Hefei University of Technology under Grant No XC2015JZBZ25, and the Natural Science Foundation of Jiangxi Province under Grant Nos 20161BAB206156 and 20171BAB206044.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/4/045201       OR      https://cpl.iphy.ac.cn/Y2018/V35/I4/045201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chun-Hua Li
Shao-Wei Wang
Yun-Hao Liu
Zhen-Wei Xia
Xiao-Hui Zhang
Dan-Dan Zou
[1]Ali S and Mushtaq A 2011 Chin. Phys. Lett. 28 075204
[2]Wei L and Wang Y N 2007 Phys. Rev. B 75 193407
[3]Wang Y L and Lü X X 2014 Phys. Plasmas 21 022107
[4]Ren H J, Wu Z W and Chu P K 2007 Phys. Plasmas 14 062102
[5]Zhu J 2015 J. Plasma Phys. 81 905810110
[6]Shukla P K and Eliasson B 2006 Phys. Rev. Lett. 96 245001
[7]Li C H, Xia Z W, Wang Y P and Zhang X H 2016 Chin. Phys. Lett. 33 105201
[8]Hora H 2007 Laser Part. Beams 25 37
[9]Manfredi G 2005 Fields Inst. Commun. 46 263
[10]Shukla P K and Eliasson B 2011 Rev. Mod. Phys. 83 885
[11]Brodin G and Marklund M 2007 New J. Phys. 9 277
[12]Manfredi G and Haas F 2001 Phys. Rev. B 64 075316
[13]Haas F 2005 Phys. Plasmas 12 062117
[14]Sahu B, Choudhury S and Sinha A 2015 Phys. Plasmas 22 022304
[15]Ghosh B, Chandra S and Paul S N 2012 Pramana 78 779
[16]Masood W, Eliasson B and Shukla P K 2010 Phys. Rev. E 81 066401
[17]Maroof R, Ali S, Mushtaq A and Qamar A 2015 Phys. Plasmas 22 112102
[18]Liu T L, Wang Y L and Lu Y Z 2015 Chin. Phys. B 24 025202
[19]Melrose D B and Mushtaq A 2011 Phys. Rev. E 83 56404
[20]Oraevsky V N and Semikoz V B 2003 Phys. At. Nucl. 66 466
[21]Misra A P, Brodin G, Marklund M and Shukla P K 2010 J. Plasma Phys. 76 857
[22]Shukla P K 2007 Phys. Lett. A 369 312
[23]Li C H, Wu Z W, Ren H J, Yang W H and Chu P K 2012 Phys. Plasmas 19 122114
[24]Mushtaq A, Maroof R, Ahmad Z and Qamar A 2012 Phys. Plasmas 19 052101
[25]Brodin G, Marklund M, Zamanian J and Stefan M 2011 Plasma Phys. Control. Fusion 53 074013
[26]Chen F F 1984 Introduction to Plasma Physics and Controlled Fusion (New York: Plenum) p 125
[27]Shahmansouri M and Misra A P 2016 Phys. Plasmas 23 072105
[28]Mahajan S M and Asenjo F A 2011 Phys. Rev. Lett. 107 195003
Related articles from Frontiers Journals
[1] SUN Xin-Feng, JIANG Zhong-He, XU Tao, HU Xi-Wei, ZHUANG Ge, WANG Lu, WANG Xiao-Hong. Absolute and Convective Instabilities of Two-Plasmon Decay in an Inhomogeneous Magnetized Plasma[J]. Chin. Phys. Lett., 2015, 32(12): 045201
[2] LIANG Hui-Min, WANG Jing-Quan, WANG Xue, WANG Gui-Mei. Surface Plasmon Interference Lithography Assisted by a Fabry–Perot Cavity Composed of Subwavelength Metal Grating and Thin Metal Film[J]. Chin. Phys. Lett., 2015, 32(10): 045201
[3] PENG Li, GUO Bin, GAO Ming-Xiang, CAI Xin. Negative Refraction in a Lossy Plasma Layer[J]. Chin. Phys. Lett., 2015, 32(06): 045201
[4] ZHANG Xin-Yuan, WANG Lu-Lu, CHEN Zhao, CUI Lu-Na, SHANG Ce, ZHAO Yu-Fang, DUAN Gao-Yan, LIU Jian-Bin, YU Li. The Line Shape of Double-Sided Tooth-Disk Waveguide Filters Based on Plasmon-Induced Transparency[J]. Chin. Phys. Lett., 2015, 32(5): 045201
[5] LI Xin-Xia, XIANG Nong, GAN Chun-Yun. Effect of Wave Accessibility on Lower Hybrid Wave Current Drive in Experimental Advanced Superconductor Tokamak with H-Mode Operation[J]. Chin. Phys. Lett., 2015, 32(03): 045201
[6] GUO Bin. Faraday Effect on Negative Refraction in Uniaxial Anisotropic Plasma Metamaterials[J]. Chin. Phys. Lett., 2013, 30(10): 045201
[7] CHEN Shao-Yong, TANG Chang-Jian, ZHANG Xin-Jun. Synergy Current Driven by Combined Lower Hybrid Wave and Different Polarized Electron Cyclotron Wave in Tokamak Plasma[J]. Chin. Phys. Lett., 2013, 30(6): 045201
[8] ZHU Hui, SU Zhen-Peng, ZHENG Hui-Nan. Counter-Streaming Interaction between Fast Magnetosonic Wave and Radiation Belt Electrons[J]. Chin. Phys. Lett., 2013, 30(5): 045201
[9] ZHU Hui, SU Zhen-Peng, ZHENG Hui-Nan. Normal-Angle Dependence of the Interaction between Radiation Belt Electrons and Fast Magnetosonic Waves[J]. Chin. Phys. Lett., 2012, 29(10): 045201
[10] DUAN Wen-Xue, MA Zhi-Wei, and WU Bin. Combining Effects between LHW and IBW Injections on EAST[J]. Chin. Phys. Lett., 2012, 29(8): 045201
[11] LUAN Qi-Bin, SHI Yi-Peng, and WANG Xiao-Gang. Mode Conversion and Whistler Wave Generation on an Alfvén Resonance Layer in High Beta Plasmas[J]. Chin. Phys. Lett., 2012, 29(8): 045201
[12] XIAO Fu-Liang, **, HE Zhao-Guo ZHANG Sai, SU Zhen-Peng, CHEN Liang-Xu, . Diffusion Simulation of Outer Radiation Belt Electron Dynamics Induced by Superluminous L-O Mode Waves[J]. Chin. Phys. Lett., 2011, 28(3): 045201
[13] GUO Jun, **, YU Bin, GUO Guang-Hai, ZHAO Bo . Electron Whistler Mode Waves Associated with Collisionless Magnetic Reconnection[J]. Chin. Phys. Lett., 2011, 28(2): 045201
[14] LIANG Hui-Min**, WANG Jing-Quan . Simulation of Interference Nanolithography of Second-Exciting Surface-Plasmon Polartions for Metal Nanograting Fabrication[J]. Chin. Phys. Lett., 2011, 28(1): 045201
[15] ZHANG Sai, XIAO Fu-Liang** . Chorus-Driven Outer Radiation Belt Electron Dynamics at Different L-Shells[J]. Chin. Phys. Lett., 2010, 27(12): 045201
Viewed
Full text


Abstract