PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
|
|
|
|
Effect of Parallel-Plate Geometry on Mode Transition Behavior in Argon Microplasmas: Two-Dimensional Simulation |
Xiang-Mei Liu1**, Yuan-Hong Song2, Wei Jiang3, Wen-Zhu Jia2 |
1School of Science, Qiqihar University, Qiqihar 161006 2School of Physics, Dalian University of Technology, Dalian 116024 3School of Physics, Huazhong University of Science and Technology, Wuhan 430074
|
|
Cite this article: |
Xiang-Mei Liu, Yuan-Hong Song, Wei Jiang et al 2018 Chin. Phys. Lett. 35 045202 |
|
|
Abstract A two-dimensional self-consistent fluid model is employed to investigate radio-frequency process parameters on the plasma properties in Ar microdischarges. The neutral gas density and temperature balance equations are taken into account. We mainly investigate the effect of the electrode gap on the spatial distribution of the electron density and electron temperature profiles, due to a mode transition from the $\gamma$ regime (secondary electrons emission is responsible for the significant ionization) to the $\alpha$ regime (sheath oscillations and bulk electrons are responsible for sustaining discharge) induced by a sudden decrease of electron density and electron temperature. The pressure, radio-frequency sources frequency and voltage effects on the electron density are also elaborately investigated.
|
|
Received: 02 January 2018
Published: 13 March 2018
|
|
|
|
Fund: Supported by the Fundamental Research Funds in Heilongjiang Provincial Universities of China under Grant No 135209312. |
|
|
[1] | Nam S K and Verboncoeur J P 2008 Appl. Phys. Lett. 93 151504 | [2] | Ito T et al 2011 Phys. Rev. Lett. 107 065002 | [3] | Kim J Y et al 2010 Appl. Phys. Lett. 96 203701 | [4] | Kim G J et al 2010 Appl. Phys. Lett. 96 021502 | [5] | Kim S J et al 2009 Appl. Phys. Lett. 94 141502 | [6] | Kong L H et al 2017 J. Phys. D 50 165203 | [7] | Zhang Y et al 2014 J. Appl. Phys. 115 193301 | [8] | Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 47 | [9] | Fan W L et al 2013 J. Phys. D 46 475208 | [10] | Massines F and Gouda G 1998 J. Phys. D 31 3411 | [11] | Li X C et al 2012 Phys. Plasmas 19 083505 | [12] | Yokoyama T et al 2005 J. Phys. D 38 1684 | [13] | Kuschel T et al 2011 Plasma Sources Sci. Technol. 20 065001 | [14] | Daniel S, Sebastian B, Dennis K and Volker Schulz-von der G 2013 J. Phys. D 46 464003 | [15] | Kwon H C, Kim H Y, Won I H, Wk H, Shin H K and Lee J K 2013 Phys. Plasmas 20 023506 | [16] | Yang X, Moravej M, Nowling G R, Babayan S E, Panelon J, Chang J P and Hicks R F 2005 Plasma Sources Sci. Technol. 14 314 | [17] | Farouk T, Farouk B, Staack D, Gutsol A and Fridman A 2006 Plasma Sources Sci. Technol. 15 676 | [18] | Liu X M, Song Y H and Wang Y N 2009 Chin. Phys. Lett. 26 085201 | [19] | Breden D, Miki K and Raja L L 2011 Appl. Phys. Lett. 99 111501 | [20] | Boeuf J P, Yang L L and Pitchford L C 2013 J. Phys. D 46 015201 | [21] | Lieberman M A and Lichtenberg A J 2005 Principles Of Plasma Discharges and Materials Processing 2nd edn (New York: Wiley-Interscience) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|