Chin. Phys. Lett.  2018, Vol. 35 Issue (4): 040701    DOI: 10.1088/0256-307X/35/4/040701
GENERAL |
Neutron Diffraction of Large-Volume Samples at High Pressure Using Compact Opposed-Anvil Cells
Xiao-Lin Ni1, Lei-Ming Fang2**, Xin Li1, Xi-Ping Chen2, Lei Xie2, Duan-Wei He1, Zi-Li Kou1**
1Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065
2Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999
Cite this article:   
Xiao-Lin Ni, Lei-Ming Fang, Xin Li et al  2018 Chin. Phys. Lett. 35 040701
Download: PDF(682KB)   PDF(mobile)(679KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Neutron diffraction techniques of large-volume samples at high pressure using compact opposed-anvil cells are developed at a reactor neutron source, China's Mianyang research reactor. We achieve a high-pressure condition of in situ neutron diffraction by means of a newly designed large-volume opposed-anvil cell. This pressure calibration is based on resistance measurements of bismuth and the neutron diffraction of iron. Pressure calibration experiments are performed at room temperature for a new cell using the tungsten carbide anvils with a tapered angle of 30$^{\circ}$, ${\it \Phi}$4.5 mm culet diameter and the metal-nonmetal composite gasket with a thickness of 2 mm. Transitions in Bi (I–II 2.55 GPa, III–V 7.7 GPa) are observed at 100 and 300 kN, respectively, by resistance measurements. The pressure measurement results of neutron diffraction are consistent with resistance measurements of bismuth. As a result, pressures up to about 7.7 GPa can routinely and stably be achieved using this apparatus, with the sample volume of 9 mm$^{3}$.
Received: 20 December 2017      Published: 13 March 2018
PACS:  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  07.90.+c (Other topics in instruments, apparatus, and components common to several branches of physics and astronomy)  
  29.20.dk (Synchrotrons)  
  29.25.Dz (Neutron sources)  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFA0401503, the Science Challenge Project under Grant No TZ2016001, and the National Natural Science Foundation of China under Grant No 11427810.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/4/040701       OR      https://cpl.iphy.ac.cn/Y2018/V35/I4/040701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao-Lin Ni
Lei-Ming Fang
Xin Li
Xi-Ping Chen
Lei Xie
Duan-Wei He
Zi-Li Kou
[1]Irifune T, Kurio A, Sakamoto S et al 2003 Nature 421 599
[2]Tian Y J, Xu B, Yu D L et al 2013 Nature 493 385
[3]Lunine J I, Stevenson D J et al 1985 Astrophys. J. Suppl. Ser. 58 493
[4]Leonid D and Natalia D 2012 Nat. Commun. 3 1163
[5]Neumann D A 2006 Mater. Today 9 34
[6]Ye C T, Liu Y T et al 2006 Physics 35 961 (in Chinese)
[7]Kisi E H and Howard C J 2008 Applications of Neutron Powder Diffraction (Oxford: Oxford University Press)
[8]Hull S 2013 Techniques in High Pressure Neutron Scattering (Florida: CRC Press)
[9]Shull C G, Strauser W A, Wollan E O et al 1951 Phys. Rev. 83 333
[10]Besson J M, Nelmes R J, Hamel G et al 1992 Physica B 180-181 907
[11]Klotz S, Godec Y L, Stuhr U et al 2008 Appl. Phys. Lett. 93 091904
[12]Xu J and Mao H K 2000 Science 290 783
[13]Xu J, Mao H K, Hemley R J et al 2002 J. Phys.: Condens. Matter 14 11543
[14]Xu J, Ding Y, Jacobsen S D et al 2004 High Press. Res. 24 247
[15]Boehler R, Guthrie M, Molaison J J et al 2013 High Press. Res. 33 546
[16]Hui B, He D W, Lu Y P et al 2013 Chin. J. High Press. Phys. 27 517 (in Chinese)
[17]Fang L M, Wang Y, Chen X P et al 2014 Chin. Phys. B 23 110701
[18]Decker D L, Bassett W A and Merrill L 1972 J. Phys. Chem. Ref. Data 1 773
[19]Gotou H, Yagi T, Frost D J and Rubie D C 2006 Rev. Sci. Instrum. 77 035113
[20]Bean V E, Akimoto S, Bell P M et al 1986 Physica B+C 139 52
[21]Mao H K, Bassett W A and Takahashi T 1967 J. Appl. Phys. 38 272
[22]Dunstan D J 1989 Rev. Sci. Instrum. 60 3789
[23]Wang W D, He D W and Wang H K 2010 Acta Phys. Sin. 59 3107 (in Chinese)
[24]Xu C, He D W, Wang H K et al 2013 Int. J. Refract. Met. Hard Mater. 36 232
Related articles from Frontiers Journals
[1] Jian-Hong Dai, Yan-Xing Shang, Yong-Hong Yu, Yue Xu, Hui Yu, Fang Hong, Xiao-Hui Yu, Xin-Yu Pan, and Gang-Qin Liu. Optically Detected Magnetic Resonance of Diamond Nitrogen-Vacancy Centers under Megabar Pressures[J]. Chin. Phys. Lett., 2022, 39(11): 040701
[2] Yukai Zhuang, Junwei Li, Wenhua Lu, Xueping Yang, Zhixue Du, and Qingyang Hu. High Temperature Melting Curve of Basaltic Glass by Laser Flash Heating[J]. Chin. Phys. Lett., 2022, 39(2): 040701
[3] Yu-Chen Shang, Fang-Ren Shen, Xu-Yuan Hou, Lu-Yao Chen, Kuo Hu, Xin Li, Ran Liu, Qiang Tao, Pin-Wen Zhu, Zhao-Dong Liu, Ming-Guang Yao, Qiang Zhou, Tian Cui, and Bing-Bing Liu. Pressure Generation above 35 GPa in a Walker-Type Large-Volume Press[J]. Chin. Phys. Lett., 2020, 37(8): 040701
[4] Cuiying Pei, Yunyouyou Xia, Jiazhen Wu, Yi Zhao, Lingling Gao, Tianping Ying, Bo Gao, Nana Li, Wenge Yang, Dongzhou Zhang, Huiyang Gou, Yulin Chen, Hideo Hosono, Gang Li, Yanpeng Qi. Pressure-Induced Topological and Structural Phase Transitions in an Antiferromagnetic Topological Insulator[J]. Chin. Phys. Lett., 2020, 37(6): 040701
[5] Yan-Xing Shang, Fang Hong, Jian-Hong Dai, Hui-Yu, Ya-Nan Lu, En-Ke Liu, Xiao-Hui Yu, Gang-Qin Liu, Xin-Yu Pan. Magnetic Sensing inside a Diamond Anvil Cell via Nitrogen-Vacancy Center Spins[J]. Chin. Phys. Lett., 2019, 36(8): 040701
[6] Lun Xiong, Li-Gang Bai, Xiao-Dong Li, Jing Liu. Radial X-Ray Diffraction Study of Static Strength of Tantalum to 80GPa[J]. Chin. Phys. Lett., 2017, 34(10): 040701
[7] Zhen Yuan, Jin-Long Zhu, Shao-Min Feng, Chang-Chun Wang, Li-Juan Wang, Qing-Qing Liu, Chang-Qing Jin. Wide-Temperature-Range Dielectric Permittivity Measurement under High Pressure[J]. Chin. Phys. Lett., 2017, 34(4): 040701
[8] Xiao-Yan Cui, Ting-Jing Hu, Jing-Shu Wang, Jun-Kai Zhang, Xue-Fei Li, Jing-Hai Yang, Chun-Xiao Gao. Pressure Effects on the Charge Carrier Transportation of BaF$_{2}$ Nanocrystals[J]. Chin. Phys. Lett., 2017, 34(4): 040701
[9] YANG Shuang, DING Kun, DOU Xiu-Ming, YU Ying, NI Hai-Qiao, NIU Zhi-Chuan, JIANG De-Sheng, SUN Bao-Quan. Bandgap Engineering in Wurtzite GaAs Nanowires by Hydrostatic Pressure[J]. Chin. Phys. Lett., 2015, 32(07): 040701
[10] HU Ting-Jing, CUI Xiao-Yan, LI Xue-Fei, WANG Jing-Shu, YANG Jing-Hai, GAO Chun-Xiao. In Situ Electrical Resistivity and Hall Effect Measurement of β-HgS under High Pressure[J]. Chin. Phys. Lett., 2015, 32(01): 040701
[11] YANG Jie, PENG Gang, LIU Cai-Long, LU Han, HAN Yong-Hao, GAO Chun-Xiao . The Effect of By-pass Current on the Accuracy of Resistivity Measurement in a Diamond Anvil Cell[J]. Chin. Phys. Lett., 2013, 30(6): 040701
[12] ZHAO Bei-Jing, LIU Fu-Sheng, ZHANG Ning-Chao, FENG Li-Peng,WANG Wen-Peng, ZHANG Ming-Jian. A High-Spectral-Resolution Laser Raman System and Its Application in Shock–Compressed Benzene[J]. Chin. Phys. Lett., 2013, 30(3): 040701
[13] HAN Qi-Gang, ZHANG Qiang, LI Ming-Zhe, JIA Xiao-Peng, LI Yue-Fen, MA Hong-An. An Effective Solution for the Best Set of Beveling Parameters of the Cubic High-Pressure Tungsten Carbide Anvil[J]. Chin. Phys. Lett., 2012, 29(11): 040701
[14] LI Xiao-Lei**,WANG Li-Ying. The Microstructure and Thermal Conductivity of Aluminum Nitride Ceramics Sintered at High Pressure with CaC2[J]. Chin. Phys. Lett., 2012, 29(5): 040701
[15] FAN Da-Wei**, MA Mai-Ning, YANG Jun-Jie, WEI Shu-Yi, CHEN Zhi-Qiang, XIE Hong-Sen . In situ High-Pressure Synchrotron X-Ray Diffraction Study of Clinozoisite[J]. Chin. Phys. Lett., 2011, 28(12): 040701
Viewed
Full text


Abstract