CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Structural Distortion and Defects in Ti$_{3}$AlC$_{2}$ irradiated by Fe and He Ions |
Li-Long Pang1, Bing-Sheng Li1, Tie-Long Shen1, Xing Gao1, Xue-Song Fang1,2, Ning Gao1, Cun-Feng Yao1, Kong-Fang Wei1, Ming-Huan Cui1, Jian-Rong Sun1, Hai-Long Chang1, Wen-Hao He1,2, Qing Huang3, Zhi-Guang Wang1** |
1Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 2University of Chinese Academy of Sciences, Beijing 100049 3Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201
|
|
Cite this article: |
Li-Long Pang, Bing-Sheng Li, Tie-Long Shen et al 2018 Chin. Phys. Lett. 35 026102 |
|
|
Abstract Ti$_{3}$AlC$_{2}$ samples are irradiated in advance by 3.5 MeV Fe-ion to the fluence of 1.0$\times$10$^{16}$ ion/cm$^{2}$, and then are implanted by 500 keV He-ion with the fluence of 1.0$\times$10$^{17}$ ion/cm$^{2}$ at room temperature. The irradiated samples are investigated by grazing incidence x-ray diffraction (GIXRD) and transmission electron microscopy (TEM). GIXRD results show serious structural distortion, but without amorphization in the irradiated samples. Fe-ion irradiation and He-ion implantation create much more serious structural distortion than single Fe-ion irradiation. TEM results reveal that there are a large number of defect clusters in the damage region, and dense spherical He bubbles appear in the He depositional region. It seems that the pre-damage does not influence the growth of He bubbles, but He-ion implantation influences the pre-created defect configurations.
|
|
Received: 27 October 2017
Published: 23 January 2018
|
|
PACS: |
61.72.Dd
|
(Experimental determination of defects by diffraction and scattering)
|
|
61.72.Ff
|
(Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))
|
|
61.72.J-
|
(Point defects and defect clusters)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11405231 and 91426301. |
|
|
[1] | Sun Z M 2011 Mater. Rev. 56 143 | [2] | Radovic M and Barsoum M W 2013 Am. Ceram. Soc. Bull. 92 20 | [3] | Yin K D, Zhang X T, Huang Q and Xue J M 2017 Chin. Phys. B 26 60703 | [4] | Shen H H, Li F Z et al 2017 Ceram. Soc. 37 855 | [5] | Clark D W, Zinkle S J, Patel M K et al 2016 Acta Mater. 105 130 | [6] | Huang Q, Liu R, Lei G et al 2015 J. Nucl. Mater. 465 640 | [7] | Nappé J C, Maurice C, Grosseau P et al 2011 J. Eur. Ceram. Soc. 31 1503 | [8] | Whittle K R, Blackford M G, Aughterson R D et al 2010 Acta Mater. 58 4362 | [9] | Yang T, Wang C, Taylor C A et al 2014 Acta Mater. 65 351 | [10] | Liu X M, Le Flem M, Béchade J L et al 2010 J. Nucl. Mater. 401 149 | [11] | Tallman D J, Hoffman E N, El'ad N C et al 2015 Acta Mater. 85 132 | [12] | Ang C, Silva C, Shih C et al 2016 Scr. Mater. 114 74 | [13] | Mansur L and Coghlan W 1983 J. Nucl. Mater. 119 1 | [14] | Wang J, Gao X, Wang Z G et al 2015 Chin. Phys. Lett. 32 076101 | [15] | Liu Y Z, Li B S and Zhang L 2017 Chin. Phys. Lett. 34 052801 | [16] | Wang C, Yang T, Kong S et al 2013 J. Nucl. Mater. 440 606 | [17] | Song P, Sun J R, Wang Z G et al 2014 Nucl. Instrum. Methods Phys. Res. Sect. B 326 332 | [18] | Patel M K, Tallman D J, Valdez J A et al 2014 Scr. Mater. 77 1 | [19] | Shen H H, Li F Z, Zhang H B et al 2017 J. Nucl. Mater. 485 262 | [20] | Ziegler J F SRIM 2008 Available from: www.srim.org | [21] | Qi Q, Cheng G J, Shi L Q et al 2014 Acta Mater. 66 317 | [22] | Xiao J R, Yang T F, Wang C X, Xue J M and Wang Y G 2015 J. Am. Ceram. Soc. 98 1323 | [23] | Lian J, Zu X T, Kutty K V G et al 2002 Phys. Rev. B 66 054108 | [24] | Ofan A, Zhang L, Gaathon O et al 2010 Phys. Rev. B 82 104113 | [25] | Trinkaus H 1983 Radiat. Eff. 78 189 | [26] | Glasgow B B and Wolfer W G 1984 J. Nucl. Mater. 122 503 | [27] | Trinkaus H and Wolfer W G 1984 J. Nucl. Mater. 122 552 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|