Chin. Phys. Lett.  2018, Vol. 35 Issue (2): 026101    DOI: 10.1088/0256-307X/35/2/026101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Effects of Grain Boundary Characteristics on Its Capability to Trap Point Defects in Tungsten
Wen-Hao He1,2, Xing Gao1**, Ning Gao1, Ji Wang3, Dong Wang4, Ming-Huan Cui1, Li-Long Pang1, Zhi-Guang Wang1**
1Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000
2University of Chinese Academy of Sciences, Beijing 100049
3Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201
4State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084
Cite this article:   
Wen-Hao He, Xing Gao, Ning Gao et al  2018 Chin. Phys. Lett. 35 026101
Download: PDF(1749KB)   PDF(mobile)(1737KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract As recombination centers of vacancies (Vs) and self-interstitial atoms (SIAs), firstly grain boundaries (GBs) should have strong capability of trapping point defects. In this study, abilities to trap Vs and SIAs of eight symmetric tilt GBs in tungsten are investigated through first-principles calculations. On the one hand, vacancy formation energy $E_{\rm V}^{\rm f}$ rapidly increases then slowly decreases as the hard-sphere radius $r_0$ of the vacancy increases. The value of $E_{\rm V}^{\rm f}$ is the largest when $r_0$ is about 1.38 Å, which is half the distance between the nearest atoms in equilibrium single crystal tungsten. That is, any denser or looser atomic configuration around GBs than that in bulk is helpful to form a vacancy. On the other hand, SIA formation energy $E_{\rm SIA}^{\rm f}$ at GBs decreases monotonically with increasing the hard-sphere radius of the interstitial sites, which indicates that GBs with larger interstitial sites have stronger ability to trap SIAs. Based on the data obtained for GBs investigated in this study, it is found that the ability to trap Vs increases as the GB energy increases, and the capability of trapping SIAs linearly increases as the excess volume of GB increases. Due to its lowest GB energy and smallest excess volume among all GBs studied, twin GB $\sum$3(110)[111] has the weakest capability to trap both Vs and SIAs.
Received: 02 November 2017      Published: 23 January 2018
PACS:  61.72.jd (Vacancies)  
  61.72.jj (Interstitials)  
  61.72.Mm (Grain and twin boundaries)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 91426301, 11605256 and 11405231.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/2/026101       OR      https://cpl.iphy.ac.cn/Y2018/V35/I2/026101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-Hao He
Xing Gao
Ning Gao
Ji Wang
Dong Wang
Ming-Huan Cui
Li-Long Pang
Zhi-Guang Wang
[1]Trinkaus H and Wolfer W G 1984 J. Nucl. Mater. 122 552
[2]Stubbins J F 1986 J. Nucl. Mater. 141 748
[3]Singh B N, A Foreman J E and Trinkaus H 1997 J. Nucl. Mater. 249 103
[4]Sickafus K E, Grimes R W, Valdez J A et al 2007 Nat. Mater. 6 217
[5]Odette G R and Lucas G E 1998 Radiat. Eff. Defects Solids 144 189
[6]Zinkle S J and Ghoniem N M 2000 Fusion Eng. Des. 51 55
[7]Victoria M, Baluc N, Bailat C et al 2000 J. Nucl. Mater. 276 114
[8]Diaz de la Rubia T, Zbib H M, Khraishi T A et al 2000 Nature 406 871
[9]Odette G R and Lucas G E 2001 JOM 53 18
[10]Kurishita H, Kobayashi S, Nakai K et al 2008 J. Nucl. Mater. 377 34
[11]Fukuda M, Hasegawa A, Tanno T et al 2013 J. Nucl. Mater. 442 S273
[12]Kurishita H, Matsuso S, Arakawa H et al 2009 Adv. Mater. Res. 59 18
[13]Kurishita H, Kobayashi S, Nakai K et al 2007 Phys. Scr. T128 76
[14]Kurishita H, Amano Y, Kobayashi S et al 2007 J. Nucl. Mater. 367 1453
[15]Chai J, Li Y H, Niu L L et al 2017 Nucl. Instrum. Methods Phys. Res. Sect. B 393 144
[16]Tschopp M A, Solanki K N, Gao F et al 2012 Phys. Rev. B 85 064108
[17]Li X, Liu W, Xu Y et al 2013 Nucl. Fusion 53 123014
[18]Li X, Liu W, Xu Y et al 2014 J. Nucl. Mater. 444 229
[19]Bai X M, Voter A F, Hoagland R G et al 2010 Science 327 1631
[20]Chen D, Wang J, Chen T et al 2013 Sci. Rep. 3 1450
[21]Li X, Liu W, Xu Y et al 2016 Acta Mater. 109 115
[22]Li X, Duan G, Xu Y et al 2017 Nucl. Fusion 57 116055
[23]Ashby M F 1969 Scr. Metall. 3 837
[24]Siegel R W, Chang S M and Balluffi R W 1980 Acta Metall. 28 249
[25]Han W Z, Demkowiczand M J, Fu E G et al 2012 Acta Mater. 60 6341
[26]Basu B K and Elbaum C 1965 Acta Metall. 13 1117
[27]Demkowicz M J, Anderoglu O, Zhang X et al 2011 J. Mater. Res. 26 1666
[28]King A H and Smith D A 1980 Philos. Mag. A 42 495
[29]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30]Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[31]Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[32]Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[33]Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
[34]Gonze X, Ghosez Ph and Godby R W 1997 Phys. Rev. Lett. 78 294
[35]Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[36]Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[37]Kittel C 1996 Introduction to Solid State Physics (New York: John Wiley and Sons)
[38]He W H, Gao X, Wang D et al 2107 Comput. Mater. Sci (submitted)
[39]Baskes M I and Vitek V 1985 Metall. Trans. A 16 1625
[40]Zhou X, Marchand D and McDowell D L 2016 Phys. Rev. Lett. 116 075502
[41]Becquart C S and Domain C 2007 Nucl. Instrum. Methods Phys. Res. Sect. B 255 23
[42]Maier K, Peo M, Saile B et al 1979 Philos. Mag. A 40 701
[43]Nguyen-Manh D, Horsfield A P and Dudarev S L 2006 Phys. Rev. B 73 020101(R)
[44]Kurtz R J and Heinisch H L 2004 J. Nucl. Mater. 329 1199
Related articles from Frontiers Journals
[1] Min Zhang, Chaoliang Hu, Qi Zhang, Feng Liu, Shen Han, Chenguang Fu, and Tiejun Zhu. Realizing n-Type GeTe through Suppressing the Formation of Cation Vacancies and Bi-Doping[J]. Chin. Phys. Lett., 2021, 38(12): 026101
[2] Jin-Long Liu, Liang-Xian Chen, Jun-Jun Wei, Li-Fu Hei, Xu Zhang, Cheng-Ming Li. Surface Carbonization of GaN and the Related Structure Evolution during the Annealing Process[J]. Chin. Phys. Lett., 2018, 35(1): 026101
[3] Bonghoon Kang, Sung-Tae Hwang. Investigations for the Surface of the Oxide Semiconductor Changes by Reduction[J]. Chin. Phys. Lett., 2016, 33(05): 026101
[4] LI Yuan-Fei, SHEN Tie-Long, GAO Xing, GAO Ning, YAO Cun-Feng, SUN Jian-Rong, WEI Kong-Fang, LI Bing-Sheng, ZHANG Peng, CAO Xing-Zhong, ZHU Ya-Bin, PANG Li-Long, CUI Ming-Huan, CHANG Hai-Long, WANG Ji, ZHU Hui-Ping, WANG Dong, SONG Peng, SHENG Yan-Bin, ZHANG Hong-Peng, HU Bi-Tao, WANG Zhi-Guang. Helium-Implantation-Induced Damage in NHS Steel Investigated by Slow-Positron Annihilation Spectroscopy[J]. Chin. Phys. Lett., 2014, 31(03): 026101
[5] LEI Shu-Lai, LI Bin, HUANG Jing, LI Qun-Xiang, YANG Jin-Long. A First-Principles Investigation of the Carrier Doping Effect on the Magnetic Properties of Defective Graphene[J]. Chin. Phys. Lett., 2013, 30(7): 026101
[6] YUAN Xiao-Jian, **, CHEN Nan-Xian, SHEN Jiang . Lattice-Inversion Embedded-Atom-Method Interatomic Potentials for Group-VA Transition Metals[J]. Chin. Phys. Lett., 2011, 28(12): 026101
[7] CHENG Fang, LIU Ting-Yu**, ZHANG Qi-Ren, QIAO Hai-Ling, ZHOU Xiu-Wen . Computer Simulation of the Electronic Structures and Absorption Spectra for a KMgF3 Crystal Containing a Potassium Vacancy[J]. Chin. Phys. Lett., 2011, 28(3): 026101
[8] XU Jian-Ping, LI Lan, LV Li-Ya, ZHANG Xiao-Song, CHEN Xi-Ming, WANG Jian-Feng, ZHANG Feng-Ming, ZHONG Wei, DU You-Wei. Structural and Magnetic Properties of Fe-Doped Anatase TiO2 Films Annealed in Vacuum[J]. Chin. Phys. Lett., 2009, 26(9): 026101
Viewed
Full text


Abstract