Chin. Phys. Lett.  2018, Vol. 35 Issue (12): 127401    DOI: 10.1088/0256-307X/35/12/127401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
A Triplet Resonance in Superconducting Fe$_{1.03}$Se$_{0.4}$Te$_{0.6}$
Juanjuan Liu1, A. T. Savici2, G. E. Granroth2, K. Habicht3, Y. Qiu4,5, Jin Hu6, Z. Q. Mao7, Wei Bao1**
1Department of Physics, Renmin University of China, Beijing 100872
2Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
3Helmholtz-Zentrum Berlin für Materialen und Energy, Berlin D-14109, Germany
4NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
5Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
6Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
7Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
Cite this article:   
Juanjuan Liu, A. T. Savici, G. E. Granroth et al  2018 Chin. Phys. Lett. 35 127401
Download: PDF(611KB)   PDF(mobile)(580KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract From heavy fermion compounds and cuprates to iron pnictides and chalcogenides, a spin resonance at $\hbar{\it \Omega}_0\propto k_{\rm B}T_{\rm c}$ is a staple of nearly magnetic superconductors. Possible explanations include a two-particle bound state or loss of magnon damping in the superconducting state. While both scenarios suggest a central role for magnetic fluctuations, distinguishing them is important to identify the right theoretical framework to understand these types of unconventional superconductors. Using an inelastic neutron scattering technique, we show that the spin resonance in the optimally doped Fe$_{1.03}$Se$_{0.4}$Te$_{0.6}$ superconductor splits into three peaks in a high magnetic field, a signature of a two-particle $S=1$ triplet bound state.
Keywords:       
Received: 12 October 2018      Published: 23 November 2018
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  78.70.Nx (Neutron inelastic scattering)  
  74.20.Mn (Nonconventional mechanisms)  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
Fund: Supported by the National Basic Research Program of China under Grant Nos 2012CB921700 and 2011CBA00112, the National Natural Science Foundation of China under Grant Nos 11034012 and 11190024, the National Science Foundation under Grant No DMR-0645305, the US DOE under Grant No DE-FG02-07ER46358, and the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Grant No DE-AC05-00OR22725.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/12/127401       OR      https://cpl.iphy.ac.cn/Y2018/V35/I12/127401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Juanjuan Liu
A. T. Savici
G. E. Granroth
K. Habicht
Y. Qiu
Jin Hu
Z. Q. Mao
Wei Bao
[1]Rossat-Mignod J, Regnault L, Vettier C, Bourges P, Burlet P, Bossy J, Henry J and Lapertot G 1991 Physica C 185 86
[2]Mook H A, Yethiraj M, Aeppli G, Mason T and Armstrong T 1993 Phys. Rev. Lett. 70 3490
[3]Fong H F, Bourges P, Sidis Y, Regnault L P, Ivanov A, Gu G D, Koshizuka N and Keimer B 1999 Nature 398 588
[4]He H F, Bourges P, Sidis Y, Ulrich C, Regnault L P, Pailhés S, Berzigiarova N S, Kolesnikov N N and Keimer B 2002 Science 295 1045
[5]Tranquada J M, Lee C H, Yamada K, Lee Y S, Regnault L P and Rønnow H M 2004 Phys. Rev. B 69 174507
[6]Metoki N, Haga Y, Koike Y and Onuki Y 1998 Phys. Rev. Lett. 80 5417
[7]Sato N K, Aso N, Miyake K, Shiina R, Thalmeier P, Varelogiannis G, Geibel C, Steglich F, Fulde P and Komatsubara T 2001 Nature 410 340
[8]Stockert O, Arndt J, Schneidewind A, Schneider H, Jeevan H, Geibel C, Steglich F and Loewenhaupt M 2008 Physica B 403 973
[9]Stock C, Broholm C, Hudis J, Kang H J and Petrovic C 2008 Phys. Rev. Lett. 100 087001
[10]Christianson A D, Goremychkin E A, Osborn R, Rosenkranz S, Lumsden M D, Malliakas C D, Todorov S, Claus H, Chung D Y and Kanatzidis M G 2008 Nature 456 930
[11]Lumsden M D, Christianson A D, Parshall D, Stone M B, Nagler S E, MacDougall G, Mook H A, Lokshin K, Egami T and Abernathy D L 2009 Phys. Rev. Lett. 102 107005
[12]Qiu Y, Bao W, Zhao Y, Broholm C, Stanev V, Tesanovic Z, Gasparovic Y C, Chang S, Hu J and Qian B 2009 Phys. Rev. Lett. 103 067008
[13]Uemura Y J 2009 Nat. Mater. 8 253
[14]Maki K and Won H 1994 Phys. Rev. Lett. 72 1758
[15]Monthoux P and Scalapino D J 1994 Phys. Rev. Lett. 72 1874
[16]Demler E and Zhang S C 1995 Phys. Rev. Lett. 75 4126
[17]Eremin I, Zwicknagl G, Thalmeier P and Fulde P 2008 Phys. Rev. Lett. 101 187001
[18]Mazin I I, Singh D J, Johannes M D and Du M H 2008 Phys. Rev. Lett. 101 057003
[19]Korshunov M M and Eremin I 2008 Phys. Rev. B 78 140509(R)
[20]Thalmeier P and Akbari A 2013 Eur. Phys. J. B 86 82
[21]Morr D K and Pines D 1998 Phys. Rev. Lett. 81 1086
[22]Batista C D, Ortiz G and Balatsky A V 2001 Phys. Rev. B 64 172508
[23]Kranendonk J V and Vleck J H V 1958 Rev. Mod. Phys. 30 1
[24]Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y and Yan D C 2008 Proc. Natl. Acad. Sci. USA 105 14262
[25]Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[26]Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[27]Wang X, Liu Q, Lv Y, Gao W, Yang L X, Yu R, Li F and Jin C 2008 Solid State Comm. 148 538
[28]Liu T, Ke X, Qian B, Hu J, Fobes D, Vehstedt E K, Pham H, Yang J, Fang M and Spinu L 2009 Phys. Rev. B 80 174509
[29]Liu T, Hu B Q J, Fobes D, Mao Z, Bao W, Reehuis M, Kimber S, Prokes K, Matas S and Argyriou D 2010 Nat. Mat. 9 718
[30]Argyriou D N, Hiess A, Akbari A, Eremin I, Korshunov M M, Hu J, Qian B, Mao Z, Qiu Y and Broholm C 2010 Phys. Rev. B 81 220503(R)
[31]Thampy V, Kang J, Rodriguez-Rivera J A, Bao W, Savici A T, Hu J, Liu T J, Qian B, Fobes D and Mao Z Q 2012 Phys. Rev. Lett. 108 107002
[32]Prokes K, Hiess A, Bao W, Wheeler E, Landsgesell S and Argyriou D N 2012 Phys. Rev. B 86 064503
[33]Wen J, Xu G, Xu Z, Lin Z W, Li Q, Chen Y, Chi S, Gu G and Tranquada J M 2010 Phys. Rev. B 81 100513(R)
[34]Fang M H, Yang J H, Balakirev F F, Kohama Y, Singleton J, Qian B, Mao Z Q, Wang H D and Yuan H Q 2010 Phys. Rev. B 81 020509
[35]Broholm C, Aeppli G, Chen Y, Dender D C, Enderle M, Hammar P R, Honda Z, Katsumata K, Landee C P, M Oshikawa et al 2002 High Magnetic Fields-Applications in Condensed Matter Physics and Spectroscopy (New York: Springer-Verlag), p 211–234
[36]Demler E and Zhang S C 1998 Nature 396 733
[37]Dai P, Mook H A, Hayden S M, Aeppli G, Perring T G, Hunt R D and an F D 1999 Science 284 1344
[38]Kee H Y, Kivelson S A and Aeppli G 2002 Phys. Rev. Lett. 88 257002
[39]Abanov A, Chubukov A, Eschrig M, Norman M R and Schmalian J 2002 Phys. Rev. Lett. 89 177002
[40]Lee W C and MacDonald A H 2008 Phys. Rev. B 78 174506
[41]Stock C, Broholm C, Zhao Y, Demmel F, Kang H J, Rule K C and Petrovic C 2012 Phys. Rev. Lett. 109 167207
Related articles from Frontiers Journals
[1] Yi-Fu Wang, Mussaab I. Niass, Fang Wang, Yu-Huai Liu. Reduction of Electron Leakage in a Deep Ultraviolet Nitride Laser Diode with a Double-Tapered Electron Blocking Layer[J]. Chin. Phys. Lett., 2019, 36(5): 127401
[2] Jian Liu, Bao-He Li, Xiao-Song Chen. Generalized Master Equation for Space-Time Coupled Continuous Time Random Walk[J]. Chin. Phys. Lett., 2017, 34(5): 127401
Viewed
Full text


Abstract