CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Thermal conductivity in near-nodal superconductors |
Hui Meng1, Huan Zhang1, Wan-Sheng Wang2, Qiang-Hua Wang1,3** |
1National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093 2Department of Physics, Ningbo University, Ningbo 315211 3Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093
|
|
Cite this article: |
Hui Meng, Huan Zhang, Wan-Sheng Wang et al 2018 Chin. Phys. Lett. 35 127402 |
|
|
Abstract The universal behavior of thermal conductivity at low temperatures is usually taken as the signature of gap nodes in superconductors. Here we show that in near-nodal superconductors the thermal conductivity obeys a two-parameter scaling law, and can develop super-universal behavior if the temperature is about half the gap minimum. However, when the temperature is fixed at about one quarter of the gap minimum, the thermal conductivity can develop a dip versus the scattering rate, which is in excellent agreement with the behavior of the experimental thermal conductivity in Sr$_2$RuO$_4$. Our theory is useful to correctly analyze the thermal conductivity in any near-nodal superconductor.
|
|
Received: 16 October 2018
Published: 23 November 2018
|
|
PACS: |
74.25.fc
|
(Electric and thermal conductivity)
|
|
74.20.-z
|
(Theories and models of superconducting state)
|
|
74.20.Rp
|
(Pairing symmetries (other than s-wave))
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFA0300401, and the National Natural Science Foundation of China under Grant Nos 11574134 and 11604168. |
|
|
[1] | Durst A C and Lee P A 2000 Phys. Rev. B 62 1270 | [2] | Stewart G R 2011 Rev. Mod. Phys. 83 1589 | [3] | Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G and Lichtenberg F 1994 Nature 372 532 | [4] | Ishida K, Mukuda H, Kitaoka Y, Asayama K, Mao Z Q, Mori Y and Maeno Y 1998 Nature 396 658 | [5] | Murakawa H, Ishida K, Kitagawa K, Mao Z Q and Maeno Y 2004 Phys. Rev. Lett. 93 167004 | [6] | Ishida K, Manago M, Yamanaka T, Fukazawa H, Mao Z Q, Maeno Y and Miyake K 2015 Phys. Rev. B 92 100502(R) | [7] | Manago M, Ishida K, Mao Z Q and Maeno Y 2016 Phys. Rev. B 94 180507(R) | [8] | Luke G M, Fudamoto Y, Kojima K M, Larkin M I, Merrin J, Nachumi B, Uemura Y J, Maeno Y, Mao Z Q, Mori Y, Nakamura H and Sigrist M 1998 Nature 394 558 | [9] | Xia J, Maeno Y, Beyersdorf P T, Fejer M M and Kapitulnik A 2006 Phys. Rev. Lett. 97 167002 | [10] | Mackenzie A P and Maeno Y 2003 Rev. Mod. Phys. 75 657 | [11] | Nishizaki S, Maeno Y and Mao Z Q 1999 J. Low Temp. Phys. 117 1581 | [12] | Nishizaki S, Maeno Y and Mao Z Q 2000 J. Phys. Soc. Jpn. 69 572 | [13] | Deguchi K, Mao Z Q, Yaguchi H and Maeno Y 2004 Phys. Rev. Lett. 92 047002 | [14] | Bonalde I, Yanoff B D, Salamon M B, Van Harlingen D J, Chia E M E, Mao Z Q and Maeno Y 2000 Phys. Rev. Lett. 85 4775 | [15] | Ishida K, Mukuda H, Kitaoka Y, Mao Z Q, Mori Y and Maeno Y 2000 Phys. Rev. Lett. 84 5387 | [16] | Suderow H, Brison J P, Flouquet J, Tyler A W and Maeno Y 1998 J. Phys.: Condens. Matter 10 L597 | [17] | Suzuki M, Tanatar M A, Kikugawa N, Mao Z Q, Maeno Y and Ishiguro T 2002 Phys. Rev. Lett. 88 227004 | [18] | Hassinger E, Bourgeois-Hope P, Taniguchi H, René de Cotret S, Grissonnanche G, Anwar M S, Maeno Y, Doiron-Leyraud N and Taillefer L 2017 Phys. Rev. X 7 011032 | [19] | Wang W S, Zhang C C, Zhang F C and Wang Q H 2018 arXiv:1808.09210 | [20] | Xiang T 2007 D-wave Superconductivity (Beijing: Science Press of China) (in Chinese) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|