CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors |
He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu**, Shi-Jin Ding** |
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433
|
|
Cite this article: |
He-Mei Zheng, Shun-Ming Sun, Hao Liu et al 2018 Chin. Phys. Lett. 35 127302 |
|
|
Abstract A capping layer for black phosphorus (BP) field-effect transistors (FETs) can provide effective isolation from the ambient air; however, this also brings inconvenience to the post-treatment for optimizing devices. We perform low-temperature hydrogenation on Al$_{2}$O$_{3}$ capped BP FETs. The hydrogenated BP devices exhibit a pronounced improvement of mobility from 69.6 to 107.7 cm$^{2}$v$^{-1}$s$^{-1}$, and a dramatic decrease of subthreshold swing from 8.4 to 2.6 V/dec. Furthermore, high/low frequency capacitance–voltage measurements suggest reduced interface defects in hydrogenated BP FETs. This could be due to the passivation of interface traps at both Al$_{2}$O$_{3}$/BP and BP/SiO$_{2}$ interfaces with hydrogen revealed by secondary ion mass spectroscopy.
|
|
Received: 20 August 2018
Published: 23 November 2018
|
|
PACS: |
73.63.Bd
|
(Nanocrystalline materials)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
85.30.Tv
|
(Field effect devices)
|
|
85.35.-p
|
(Nanoelectronic devices)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61474027 and 61774041. |
|
|
[1] | Xia F, Wang H and Jia Y 2014 Nat. Commun. 5 4458 | [2] | Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372 | [3] | Wang X, Jones A M, Seyler K L, Tran V, Jia Y, Zhao H, Wang H, Yang L, Xu X and Xia F 2015 Nat. Nanotechnol. 10 517 | [4] | Sun Z, Martinez A and Wang F 2016 Nat. Photon. 10 227 | [5] | Deng Y, Luo Z, Conrad N J, Liu H, Gong Y, Najmaei S, Ajayan P M, Lou J, Xu X and Ye P D 2014 ACS Nano 8 8292 | [6] | Li P, Zhang D, Liu J, Chang H, Sun Y and Yin N 2015 ACS Appl. Mater. Interfaces 7 24396 | [7] | Yasaei P, Behranginia A, Foroozan T, Asadi M, Kim K, Khaliliaraghi F and Salehikhojin A 2015 ACS Nano 9 9898 | [8] | Castellanosgomez A, Vicarelli L, Prada E et al 2014 2D Mater. 1 025001 | [9] | Wood J D, Wells S A, Jariwala D et al 2014 Nano Lett. 14 6964 | [10] | Doganov R A, O'Farrell E C T, Koenig S P et al 2015 Nat. Commun. 6 6647 | [11] | Zhu H, Mcdonnell S, Qin X et al 2015 ACS Appl. Mater. Interfaces 7 13038 | [12] | Illarionov Y Y, Waltl M, Rzepa G et al 2016 ACS Nano 10 9543 | [13] | Zhao Y, Wang H, Huang H et al 2016 Angew. Chem. 55 5003 | [14] | Luo X, Rahbarihagh Y, Hwang J C M et al 2014 IEEE Electron Device Lett. 35 1314 | [15] | Novoselov K S, Fal'Ko V I, Colombo L et al 2012 Nature 490 192 | [16] | Wu B B, Zheng H M, Ding Y Q et al 2017 Nanoscale Res. Lett. 12 282 | [17] | Castellanos-Gomez A, Buscema M, Molenaar R et al 2014 2D Mater. 1 011002 | [18] | Sze S M and Ng Kwok K 2007 Physics of Semiconductor Devices 3rd edn (Hoboken: John Wiley & Sons Inc) p 215 | [19] | Castagné R and Vapaille A 1971 Surf. Sci. 28 157 | [20] | Kozen A C, Schroeder M A, Osborn K D et al 2013 Appl. Phys. Lett. 102 173501 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|